Structure-based virtual screening, molecular dynamics and binding affinity calculations of some potential phytocompounds against SARS-CoV-2

Author(s):  
Shiv Rakesh Naik ◽  
Prashant Bharadwaj ◽  
Nadia Dingelstad ◽  
Subha Kalyaanamoorthy ◽  
Subhash C Mandal ◽  
...  
Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2157
Author(s):  
Alaa Shafie ◽  
Shama Khan ◽  
Zehra ◽  
Taj Mohammad ◽  
Farah Anjum ◽  
...  

Casein kinase-1 alpha (CK1α) is a multifunctional protein kinase that belongs to the serine/threonine kinases of the CK1α family. It is involved in various signaling pathways associated with chromosome segregation, cell metabolism, cell cycle progression, apoptosis, autophagy, etc. It has been known to involve in the progression of many diseases, including cancer, neurodegeneration, obesity, and behavioral disorders. The elevated expression of CK1α in diseased conditions facilitates its selective targeting for therapeutic management. Here, we have performed virtual screening of phytoconstituents from the IMPPAT database seeking potential inhibitors of CK1α. First, a cluster of compounds was retrieved based on physicochemical parameters following Lipinski’s rules and PAINS filter. Further, high-affinity hits against CK1α were obtained based on their binding affinity score. Furthermore, the ADMET, PAINS, and PASS evaluation was carried out to select more potent hits. Finally, following the interaction analysis, we elucidated three phytoconstituents, Semiglabrinol, Curcusone_A, and Liriodenine, posturing considerable affinity and specificity towards the CK1α binding pocket. The result was further evaluated by molecular dynamics (MD) simulations, dynamical cross-correlation matrix (DCCM), and principal components analysis (PCA), which revealed that binding of the selected compounds, especially Semiglabrinol, stabilizes CK1α and leads to fewer conformational fluctuations. The MM-PBSA analysis suggested an appreciable binding affinity of all three compounds toward CK1α.


Author(s):  
Ashish Malik ◽  
Dwarakanath Prahlad ◽  
Naveen Kulkarni ◽  
Abhijit Kayal

AbstractA novel coronavirus (SARS-CoV-2; COVID-19) that initially originates from Wuhan province in China has emerged as a global pandemic, an outbreak that started at the end of 2019 which claims 431,192 (Date: 15th June 2020 (https://covid19.who.in) life till now. Since then scientists all over the world are engaged in developing new vaccines, antibodies, or drug molecules to combat this new threat. Here in this work, we performed an in-silico analysis on the protein-protein interactions between the receptor-binding (RBD) domain of viral SPIKE protein and human angiotensin-converting enzyme 2 (hACE2) receptor to highlight the key alteration that happened from SARS-CoV to SARS-CoV-2. We analyzed and compared the molecular differences between these two viruses by using various computational approaches such as binding affinity calculations, computational alanine, and molecular dynamics simulations. The binding affinity calculations show SARS-CoV-2 binds little more firmly to the hACE2 receptor than that of SARS-CoV. Analysis of simulation trajectories reveals that enhanced hydrophobic contacts or the van der Waals interaction play a major role in stabilizing the protein-protein interface. The major finding obtained from molecular dynamics simulations is that the RBD-ACE2 interface is populated with water molecules and interacts strongly with both RBD and ACE2 interfacial residues during the simulation periods. We also emphasize that the interfacial water molecules play a critical role in binding and maintaining the stability of the RBD/hACE2 complex. The water-mediated hydrogen bond by the bridge water molecules is crucial for stabilizing the RBD and ACE2 domains. The structural and dynamical features presented here may serve as a guide for developing new drug molecules, vaccines, or antibodies to combat the COVID-19 pandemic.


2021 ◽  
Vol 14 (4) ◽  
pp. 357
Author(s):  
Magdi E. A. Zaki ◽  
Sami A. Al-Hussain ◽  
Vijay H. Masand ◽  
Siddhartha Akasapu ◽  
Sumit O. Bajaj ◽  
...  

Due to the genetic similarity between SARS-CoV-2 and SARS-CoV, the present work endeavored to derive a balanced Quantitative Structure−Activity Relationship (QSAR) model, molecular docking, and molecular dynamics (MD) simulation studies to identify novel molecules having inhibitory potential against the main protease (Mpro) of SARS-CoV-2. The QSAR analysis developed on multivariate GA–MLR (Genetic Algorithm–Multilinear Regression) model with acceptable statistical performance (R2 = 0.898, Q2loo = 0.859, etc.). QSAR analysis attributed the good correlation with different types of atoms like non-ring Carbons and Nitrogens, amide Nitrogen, sp2-hybridized Carbons, etc. Thus, the QSAR model has a good balance of qualitative and quantitative requirements (balanced QSAR model) and satisfies the Organisation for Economic Co-operation and Development (OECD) guidelines. After that, a QSAR-based virtual screening of 26,467 food compounds and 360 heterocyclic variants of molecule 1 (benzotriazole–indole hybrid molecule) helped to identify promising hits. Furthermore, the molecular docking and molecular dynamics (MD) simulations of Mpro with molecule 1 recognized the structural motifs with significant stability. Molecular docking and QSAR provided consensus and complementary results. The validated analyses are capable of optimizing a drug/lead candidate for better inhibitory activity against the main protease of SARS-CoV-2.


2021 ◽  
Vol 22 (7) ◽  
pp. 3595
Author(s):  
Md Afjalus Afjalus Siraj ◽  
Md. Sajjadur Rahman ◽  
Ghee T. Tan ◽  
Veronique Seidel

A molecular docking approach was employed to evaluate the binding affinity of six triterpenes, namely epifriedelanol, friedelin, α-amyrin, α-amyrin acetate, β-amyrin acetate, and bauerenyl acetate, towards the cannabinoid type 1 receptor (CB1). Molecular docking studies showed that friedelin, α-amyrin, and epifriedelanol had the strongest binding affinity towards CB1. Molecular dynamics simulation studies revealed that friedelin and α-amyrin engaged in stable non-bonding interactions by binding to a pocket close to the active site on the surface of the CB1 target protein. The studied triterpenes showed a good capacity to penetrate the blood–brain barrier. These results help to provide some evidence to justify, at least in part, the previously reported antinociceptive and sedative properties of Vernonia patula.


Sign in / Sign up

Export Citation Format

Share Document