EFFECTS OF PB2+ ON ROOT GROWTH, CELL DIVISION, AND NUCLEOLUS OF BRASSICA JUNCEA L.

1999 ◽  
Vol 47 (3) ◽  
pp. 153-156 ◽  
Author(s):  
Wusheng Jiang ◽  
Donghua Liu

The effects of different concentrations (10−5-10−2M) of lead nitrate on root growth and nucleoli in root tip cells of Brassica juncea L. were investigated. The results showed that lead nitrate has a stimulatory effect on root growth at lower concentrations, and an inhibitory effect at higher concentrations. Pb has toxic effects on chromosomal morphology, including c-mitosis and anaphase bridges, and on nucleoli, causing some particulate silver-stained material scattered in the nuclei and inducing irregularly shaped nucleoli. Once the nucleolus was affected, the root growth almost or completely stopped.

1994 ◽  
Vol 42 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Donghua Liu ◽  
Wusheng Jiang ◽  
Lin Guo ◽  
Yuqing Hao ◽  
Cheng Lu ◽  
...  

The effects of different concentrations of nickel sulfate on root growth and nucleoli in root tip cells of Allium cepa were studied. The concentrations of nickel sulfate (NiSO4 · 7H2O) used were in the range of 10−7-10−1M. The results showed that nickel sulfate has a stimulatory effect on root growth at lower concentrations, and an inhibitory effect at higher concentrations. Nickel has toxic effects on nucleoli at higher concentrations. Phenomena we observed were irregularly shaped nucleoli, weaker silver staining reaction at the periphery of the nucleolus, and extrusion of nucleolar material from nuclei into the cytoplasm after treatment with higher concentrations of Ni.


Phyton ◽  
2014 ◽  
Vol 83 (1) ◽  
pp. 291-298
Author(s):  
Wang QL ◽  
LT Zhang ◽  
JH Zou ◽  
DH Liu ◽  
JY Yue

1994 ◽  
Vol 42 (3) ◽  
pp. 235-243 ◽  
Author(s):  
Donghua Liu ◽  
Wusheng Jiang ◽  
Shuming Tong ◽  
Lin Zhai

Effects of Mg2+ and Co2+ on cell division and the nucleolar cycle during mitosis in root tip cells of Allium cepa were studied. The concentrations used of magnesium sulphate and cobaltous nitrate were in the range of 10−7–10−1M. The results showed that both Mg and Co can, at higher concentration, have a toxic effect on cell division comprising c-mitosis and lagging chromosomes, anaphase bridges, and chromosome stickiness. Excessive Mg and Co can also induce some silver-stained particles similar to nucleoli, which are scattered around the chromosome or in the cytoplasm during metaphase and anaphase. The possible mechanism behind this phenomenon is briefly discussed.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
W. M. Dimuthu Nilmini Wijeyaratne ◽  
L. G. Y. J. G. Wadasinghe

The present study was conducted to assess the cytotoxicity of water and sediments of an industrial effluent receiving water body in the western province of Sri Lanka using Allium cepa bioassay. Six sampling sites (Site A: Urban; B: Industrial; C: Water intake for public water supply; D: Industrial; E: Agricultural; F: Reference) were selected from the study area. Ten replicate water and sediment samples were collected from each site, and physical and chemical parameters were measured using standard analytical methods. Cytotoxicity of water and sediment elutriates were measured using Allium cepa bioassay. Despite the significant spatial variations, the overall water and sediment quality parameters of the study sites were in accordance with the standard ambient environment parameters to sustain a healthy aquatic life. In the A. cepa bulbs exposed to water samples, significant root growth variations were not observed within 48 hours of exposure. However, significant root length variations were observed in A. cepa bulbs exposed to sediment elutriates within the 48-hour exposure and the percentage root growth inhibition increased with increase of exposure time. Similar trend was observed in mitotic activity indicating significantly lower mitotic indices (compared to that of the reference site) in A. cepa root tip cells exposed to sediment elutriates than those exposed to water samples. Further, the highest number of nuclear abnormalities was recorded from root tip cells of A. cepa exposed to water and sediment samples from sites B, C, and D. Therefore, it is of extreme importance to identify the composition and speciation of these cytogenotoxic compounds in the tropical climatic conditions and to propose possible clean-up or treatment solutions to overcome this environmental and public health risk associated problem.


2019 ◽  
Vol 9 (8) ◽  
Author(s):  
Vineeta Kumari ◽  
A. K. Tripathi

Abstract The physicochemical analysis of collected effluent sample for different parameters shown results as pH (pH 5.6 ± 0.11) slightly acidic, high conductivity (1563.34 ± 176 μs cm−1), total dissolved solids (920.34 ± 137 mg L−1), high BOD (7253.34 ± 1022 mg L−1), and COD (756.67 ± 1124 mg L−1) in the effluent sample. The results of heavy metals concentration are viz. as [Cu (1.98–2.56), Co (0.26–0.53), Cd (0.10–0.50), Ni (0.04–0.07), Pb (0.58–1.2), Mn (0.58–1.05), Cr (1.47–1.51), Zn (2.61–3.5), Fe (1.72–2.13), As (0.05–0.09), and Hg (0.003–0.006)]. Results revealed the higher concentration of BOD, COD, TDS, and conductivity and also the concentration of lead. Results of GC–MS also confirmed the high levels of organic pollutants in effluent. Further the effluent toxicity was evaluated by employing genotoxocity assays with the use of Allium cepa L. (onion) root tip cells. Genotoxicity measured mitotic index (MI) and chromosomal aberrations (CAs) in root tip cells obtained after treatment with effluent of 6.25, 12.5, and 25% concentration (v/v). The results of root growth test showed that inhibition of root growth occurred at effluent concentration ≥ 50% (v/v). The lowest MI was recorded (MI = 9.6%) in 25% of effluent concentration, showing a significant reduction in mitotic index compared with control which MI = 64.1%. Further, the chromosomal aberration was investigated in root tip cell after treating with different concentration ranges of effluent exhibiting various CA, viz. c-mitosis, chromosome loss, chromosome break, micronucleated cells, etc. The result suggests that the effluent contained toxic constituents, which imposed cytotoxic and genotoxic hazard.


Sign in / Sign up

Export Citation Format

Share Document