EFFECTS OF NICKEL SULFATE ON ROOT GROWTH AND NUCLEOLI IN ROOT TIP CELLS OF ALLIUM CEPA

1994 ◽  
Vol 42 (2) ◽  
pp. 143-148 ◽  
Author(s):  
Donghua Liu ◽  
Wusheng Jiang ◽  
Lin Guo ◽  
Yuqing Hao ◽  
Cheng Lu ◽  
...  

The effects of different concentrations of nickel sulfate on root growth and nucleoli in root tip cells of Allium cepa were studied. The concentrations of nickel sulfate (NiSO4 · 7H2O) used were in the range of 10−7-10−1M. The results showed that nickel sulfate has a stimulatory effect on root growth at lower concentrations, and an inhibitory effect at higher concentrations. Nickel has toxic effects on nucleoli at higher concentrations. Phenomena we observed were irregularly shaped nucleoli, weaker silver staining reaction at the periphery of the nucleolus, and extrusion of nucleolar material from nuclei into the cytoplasm after treatment with higher concentrations of Ni.

1995 ◽  
Vol 43 (2) ◽  
pp. 125-133 ◽  
Author(s):  
Donghua Liu ◽  
Wusheng Jiang ◽  
Wei Wang ◽  
Lin Zhai

The effects of different concentrations of eleven different metals (aluminum chloride, chromium nitrate and potassium dichromate, lead nitrate, copper sulfate, manganous sulfate, cobaltous nitrate, zinc sulfate, magnesium sulfate, nickel sulfate, cadmium chloride, and mercuric chloride) on cell division and nucleoli in root tip cells of Allium cepa were studied. The results showed that the metal ions could, in varying degrees, cause chromosome, nucleus, and nucleolus irregularities, including c-mitosis, chromosome bridges, chromosome stickiness, irregularly shaped nuclei, micronuclei, irregularly shaped nucleoli, some silver-stained material scattered in the nucleus, the weakening of silver-staining reaction at the periphery of the nucleolus, and the release of nucleolar material from the nucleus into the cytoplasm. The Allium test may be useful for the rapid screening of chemicals involved in environmental problems.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
W. M. Dimuthu Nilmini Wijeyaratne ◽  
L. G. Y. J. G. Wadasinghe

The present study was conducted to assess the cytotoxicity of water and sediments of an industrial effluent receiving water body in the western province of Sri Lanka using Allium cepa bioassay. Six sampling sites (Site A: Urban; B: Industrial; C: Water intake for public water supply; D: Industrial; E: Agricultural; F: Reference) were selected from the study area. Ten replicate water and sediment samples were collected from each site, and physical and chemical parameters were measured using standard analytical methods. Cytotoxicity of water and sediment elutriates were measured using Allium cepa bioassay. Despite the significant spatial variations, the overall water and sediment quality parameters of the study sites were in accordance with the standard ambient environment parameters to sustain a healthy aquatic life. In the A. cepa bulbs exposed to water samples, significant root growth variations were not observed within 48 hours of exposure. However, significant root length variations were observed in A. cepa bulbs exposed to sediment elutriates within the 48-hour exposure and the percentage root growth inhibition increased with increase of exposure time. Similar trend was observed in mitotic activity indicating significantly lower mitotic indices (compared to that of the reference site) in A. cepa root tip cells exposed to sediment elutriates than those exposed to water samples. Further, the highest number of nuclear abnormalities was recorded from root tip cells of A. cepa exposed to water and sediment samples from sites B, C, and D. Therefore, it is of extreme importance to identify the composition and speciation of these cytogenotoxic compounds in the tropical climatic conditions and to propose possible clean-up or treatment solutions to overcome this environmental and public health risk associated problem.


1999 ◽  
Vol 47 (3) ◽  
pp. 153-156 ◽  
Author(s):  
Wusheng Jiang ◽  
Donghua Liu

The effects of different concentrations (10−5-10−2M) of lead nitrate on root growth and nucleoli in root tip cells of Brassica juncea L. were investigated. The results showed that lead nitrate has a stimulatory effect on root growth at lower concentrations, and an inhibitory effect at higher concentrations. Pb has toxic effects on chromosomal morphology, including c-mitosis and anaphase bridges, and on nucleoli, causing some particulate silver-stained material scattered in the nuclei and inducing irregularly shaped nucleoli. Once the nucleolus was affected, the root growth almost or completely stopped.


Phyton ◽  
2014 ◽  
Vol 83 (1) ◽  
pp. 291-298
Author(s):  
Wang QL ◽  
LT Zhang ◽  
JH Zou ◽  
DH Liu ◽  
JY Yue

2010 ◽  
Vol 73 (5) ◽  
pp. 949-954 ◽  
Author(s):  
W. Kwankua ◽  
S. Sengsai ◽  
C. Kuleung ◽  
N. Euawong

2016 ◽  
Vol 133 ◽  
pp. 442-447 ◽  
Author(s):  
Marcel José Palmieri ◽  
Larissa Fonseca Andrade-Vieira ◽  
José Marcello Salabert Campos ◽  
Leonardo dos Santos Gedraite ◽  
Lisete Chamma Davide

Sign in / Sign up

Export Citation Format

Share Document