Reconnaissance isotopic studies bearing on the tectonothermal history of Early Palaeozoic and Late Proterozoic sequences in western Tasmania

1985 ◽  
Vol 32 (1) ◽  
pp. 7-36 ◽  
Author(s):  
C. J. Adams ◽  
L. P. Black ◽  
K. D. Corbett ◽  
G. R. Green
1983 ◽  
Vol 73 (3) ◽  
pp. 119-134 ◽  
Author(s):  
M. A. J. Piasecki ◽  
O. van Breemen

ABSTRACTEvidence is presented for a late Proterozoic, tectonothermal event which affected the rocks of the Moine assemblage in the Central Highland region of the Scottish Caledonides c. 750 Ma ago. This is about 200 Ma before the early Palaeozoic Grampian orogeny, whose effects are superimposed on the Moine rocks as well as dominating the tectonism in the Dalradian Supergroup.Field and isotopic studies are integrated in zones of ductile thrusting (sliding) which are typified by belts of tectonic schists with related swarms of quartz and muscovite-bearing pegmatite veins. Of particular significance is a ductile thrust (the Grampian slide) which separates deeper crustal rocks (the Central Highland division), interpreted as showing the imprint of the Grenville orogeny, from shallower rocks (the Grampian division) representing a supracrustal assemblage formed between the Grenville and the c. 750 Ma events.The Grampian slide is the structurally highest member of a system of related, previously unrecorded slides affecting the Central Highland division. New structural, petrographic and Rb-Sr isotopic data, obtained largely from a recently recognised inlier of the Central Highland division at Laggan, bear out that the quartz and pegmatite veins are segregations formed during ductile shearing under amphibolite facies conditions. Muscovites from these veins yield ages between 780 and 730 Ma, and a regression analysis of tectonic schists and the muscovites gives an age of 740 ± 40 Ma. These data substantiate our previous hypothesis that the deeper-seated Moine rocks were affected by a distinct orogenic event at 750 ± 30 Ma.In the Northern Highlands, similar vein swarms are related to the Sgurr Beag slide and to belts of previously unrecorded tectonic schists in the Glenfinnan division of the Moine assemblage. A new, 755 ± 8 Ma age obtained from such a tectonic schist at Kinloch Hourn, combined with previous, similar age data from lensoid pegmatites, imply that the c. 750 Ma event may have also affected the Morar and Glenfinnan divisions.


1984 ◽  
Vol 75 (2) ◽  
pp. 113-133 ◽  
Author(s):  
Gordon B. Curry ◽  
B. J. Bluck ◽  
C. J. Burton ◽  
J. K. Ingham ◽  
David J. Siveter ◽  
...  

I. ABSTRACT: Research interest in the Highland Border Complex has been pursued sporadically during the past 150 years. The results and conclusions have emphasised the problems of dealing with a lithologically disparate association which crops out in isolated, fault-bounded slivers along the line of the Highland Boundary fault. For much of the present century, the debate has centred on whether the rocks of the complex have affinities with the Dalradian Supergroup to the N, or are a discrete group. Recent fossil discoveries in a wide variety of Highland Border rocks have confirmed that many are of Ordovician age, and hence cannot have been involved in at least the early Grampian deformational events (now accurately dated as pre-Ordovician) which affect the Dalradian Supergroup. Such palaeontological discoveries form the basis for a viable biostratigraphical synthesis. On a regional scale, it is apparent that the geological history of the Highland Border rocks must be viewed in the context of plate boundary tectonism along the entire northwestern margin of Iapetus during Palaeozoic times.II. ABSTRACT: Silicified articulate brachiopods from the Lower Ordovician (Arenig) Dounans Limestone are extremely rare but the stratigraphically diagnostic generaArchaeorthisSchuchert and Cooper, andOrthidiumHall and Clarke, have been identified. In addition, three specimens with characteristic syntrophiid morphology have been recovered. Inarticulate brachiopods are known from Stonehaven and Bofrishlie Burn near Aberfoyle, and have also been previously recorded from Arran.III. ABSTRACT: Micropalaeontological investigation of the Highland Border Complex has produced a range of microfossils including chitinozoans, coleolids, calcispheres and other more enigmatic objects. The stratigraphical ranges of the species lie almost entirely within the Ordovician and reveal a scatter of ages for different lithologies from the Arenig through to the Caradoc or Ashgill, with a pronounced erosional break between the Llandeilo and the Caradoc.IV. ABSTRACT: A Lower Ordovician (Arenig Series) silicified ostracode fauna from the Highland Border Dounans Limestone at Lime Craig Quarry, Aberfoyle, Central Scotland, represents the earliest record of this group of Crustacea from the British part of the early Palaeozoic ‘North American’ plate.V. ABSTRACT: Palaeontological age determinations for a variety of Highland Border rocks are presented. The data are based on the results of recent prospecting which has demonstrated that macro- and microfossils are present in a much greater range of Highland Border lithologies than previously realised. Data from other studies are also incorporated, as are modern taxonomie re-assessments of older palaeontological discoveries, in a comprehensive survey of Highland Border biostratigraphy. These accumulated data demonstrate that all fossiliferous Highland Border rocks so far discovered are of Ordovician age, with the exception of the Lower Cambrian Leny Limestone.VI. ABSTRACT: The Highland Border Complex consists of at least four rock assemblages: a serpentinite and possibly other ophiolitic rocks of Early or pre-Arenig age; a sequence of limestones and conglomerates of Early Arenig age; a succession of dark shales, cherts, quartz wackes, basic lavas and associated volcanogenic sediments of Llanvirn and ? earlier age; and an assemblage of limestones, breccias, conglomerates and arenites with subordinate shales of Caradoc or Ashgill age. At least three assemblages are divided by unconformities and in theirmost general aspect have similarities with coeval rocks in western Ireland.The Highland Border Complex probably formed N of the Midland Valley arc massif in a marginal sea comparable with the Sunda shelf adjacent to Sumatra–Java. Strike-slip and thrust emplacement of the whole Complex in at least four episodes followed the probable generation of all or part of its rocks by pull-apart mechanisms.


1981 ◽  
Vol 104 ◽  
pp. 5-46
Author(s):  
A.K Higgins ◽  
J.D Friderichsen ◽  
T Thyrsted

Results are presented of regional geological reconnaissance and local detailed studies. The new fjeld work, together with isotopic studies, has made possibie a provisional reassignment of metamorphic, plutonic and deformational events recorded in the different rock units to Archaean and Proterozoic, as well as Caledonian, orogenic episodes. The infracrustal elements of the 'central metamorphic complex' are considered to be essentiaIly Archaean - early Proterozoic basement gneiss complexes, and are overlain by middle Proterozoic metasedimentary sequences. The late Proterozoic and Lower Palaeozoic sediments have arestricted outcrop at present levels of exposure. During the Caledonian orogeny the late Proterozoic cover sequences appear to have become detatched from their older metamorphic 'basernent' along a decollement surface, but the nature of this contact is usually obscured by Caledonian metamorphic effects. The main characteristics of the different rock units are described. Detailed relationships are illustrated by studies of four areas: Nunatakgletscher-Eremitdal, Knækdalen and adjacent areas, Kap Hediund, and Tærskeldal-Forsblads Fjord-Randenæs.


2017 ◽  
Vol 460 (1) ◽  
pp. 183-206 ◽  
Author(s):  
Eric S. Gottlieb ◽  
Victoria Pease ◽  
Elizabeth L. Miller ◽  
Vyacheslav V. Akinin

2019 ◽  
Vol 157 (4) ◽  
pp. 539-550
Author(s):  
Gabriela Torre ◽  
Guillermo L. Albanesi

AbstractThe presence of a carbonate platform that interfingers towards the west with slope facies allows for the identification of an ancient lower Palaeozoic continental margin in the Western Precordillera of Argentina. The Los Sombreros Formation is essential for the interpretation of the continental slope of the Precordillera, which accreted to Gondwana as part of the Cuyania Terrane in the early Palaeozoic. The age of these slope deposits is controversial; therefore, a precise biostratigraphic scheme is critical to reveal the evolution of the South American continental margin of Gondwana. The study of lithic deposits of two sections of the Los Sombreros Formation, the El Salto and Los Túneles sections, provides important information for further understanding the depositional history of the slope. At El Salto section, the conodonts recovered from an allochthonous block refer to the Cordylodus proavus Zone (upper Furongian). The conodonts recovered from the matrix of a calclithite bed of the Los Sombreros Formation in the Los Túneles section are assigned to the Lenodus variabilis Zone (early Darriwilian), providing a minimum age for this stratigraphic unit. In addition, clasts from this sample yielded conodonts from the Paltodus deltifer − Macerodus dianae zones (upper Tremadocian). The contrasting conodont colour alterations and preservation states from the elements of two latter records, coming from the same sample, argue the reworked clasts originated in the carbonate platform and later transported to the slope during the accretion process of the Precordilleran Terrane to the South American Gondwanan margin during the Middle–Late Ordovician.


Author(s):  
Sharad Master

ABSTRACTThe Cape Granites are a granitic suite intruded into Neoproterozoic greywackes and slates, and unconformably overlain by early Palaeozoic Table Mountain Group orthoquartzites. They were first recognised at Paarl in 1776 by Francis Masson, and by William Anderson and William Hamilton in 1778. Studies of the Cape Granites were central to some of the early debates between the Wernerian Neptunists (Robert Jameson and his former pupils) and the Huttonian Plutonists (John Playfair, Basil Hall, Charles Darwin), in the first decades of the 19th Century, since it is at the foot of Table Mountain that the first intrusive granites outside of Scotland were described by Hall in 1812. The Neptunists believed that all rocks, including granite and basalt, were precipitated from the primordial oceans, whereas the Plutonists believed in the intrusive origin of some igneous rocks, such as granite. In this paper, some of the early descriptions and debates concerning the Cape Granites are reviewed, and the history of the development of ideas on granites (as well as on contact metamorphism and sea level changes) at the Cape in the late 18th Century and early to mid 19th Century, during the emerging years of the discipline of geology, is presented for the first time.


Sign in / Sign up

Export Citation Format

Share Document