Condensation heat transfer and pressure drop characteristics of R-134a inside the flattened tubes at high mass flux and different saturation temperature

2018 ◽  
Vol 32 (1) ◽  
pp. 69-84 ◽  
Author(s):  
Anand Kumar Solanki ◽  
Ravi Kumar
2017 ◽  
Vol 25 (03) ◽  
pp. 1750027 ◽  
Author(s):  
M. Mostaqur Rahman ◽  
Keishi Kariya ◽  
Akio Miyara

Experiments on condensation heat transfer and adiabatic pressure drop characteristics of R134a were performed inside smooth and microfin horizontal tubes. The tests were conducted in the mass flux range of 50[Formula: see text]kg/m2s to 200[Formula: see text]kg/m2s, vapor quality range of 0 to 1 and saturation temperature range of 20[Formula: see text]C to 35[Formula: see text]C. The effects of mass velocity, vapor quality, saturation temperature, and microfin on the condensation heat transfer and frictional pressure drop were analyzed. It was discovered that the local heat transfer coefficients and frictional pressure drop increases with increasing mass flux and vapor quality and decreasing with increasing saturation temperature. Higher heat transfer coefficient and frictional pressure drop in microfin tube were observed. The present experimental data were compared with the existing well-known condensation heat transfer and frictional pressure drop models available in the open literature. The condensation heat transfer coefficient and frictional pressure drop of R134a in horizontal microfin tube was predicted within an acceptable range by the existing correlation.


2003 ◽  
Author(s):  
B. Yu ◽  
C. X. Lin ◽  
M. A. Ebadian ◽  
R. C. Prattipati

This paper presents an experimental investigation of condensation heat transfer and pressure drop characteristics of refrigerant R-134a flowing through an annular helicoidal passage with the hydraulic diameter of 8.5 mm. The angles of helix axis are oriented at 0, 45, 90 degrees to gravity. The overall and refrigerant-side heat transfer coefficients and pressure drops are experimentally determined at saturation temperature 35°C, refrigerant mass flux 35–180 kg/s·m2, and cooling water temperature 27°C. The results show that orientation has significant influence on the thermal and hydraulic behaviors of the helical pipe. The results can be employed for reference in the effective design of annular helicoidal heat exchangers with R-134a as the working fluid.


Machines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 114
Author(s):  
Andreas Karageorgis ◽  
George Hinopoulos ◽  
Man-Hoe Kim

This paper presents the two-phase condensation heat transfer and pressure drop characteristics of R-513A as an alternative refrigerant to R-134a in a 9.52-mm OD horizontal microfin copper tube. The test facility had a straight, horizontal test section with an active length of 2.0 m and was cooled by cold water circulated in a surrounding annular space. The annular-side heat transfer coefficients were obtained using the Wilson plot method. The average heat transfer coefficient and pressure drop data are presented at the condensation temperature of 35 °C in the range of 100–440 kg·m−2·s−1 mass flux. The test data of R-513A are compared with those of R-134a, R-1234yf, and R-1234ze(E). The average condensation heat transfer coefficients of the R-513A and R-1234ze(E) refrigerants were similar to R-134a at the lower mass flux (100~150 kg·m−2·s−1), while they were up to 10% higher than R-134a as the mass flux increased. The pressure drop of R-513A was similar to R-1234yf and 10% lower than that of R-134a at the higher mass flux. The R-1234ze(E) pressure drops were 20 % higher compared to those of R-134a at the higher mass flux.


2013 ◽  
Vol 21 (03) ◽  
pp. 1350018 ◽  
Author(s):  
HO-WON BYUN ◽  
EUL-JONG LEE ◽  
YONG-SUP SIM ◽  
JEONG-KUN LEE ◽  
NAE-HYUN KIM

R-410A condensation heat transfer and pressure drop data are provided for a 5.0 mm O.D. microfin tube having 40 fins with 18 degree helix angle and 40 degree fin apex angle. Tests were conducted for a range of quality (0.2 ~ 0.8), mass flux (346 ~ 692 kg/m2s) and saturation temperature (45 ~ 55°C). Data are compared with smooth tube counterpart. It was found that both heat transfer coefficient and pressure drop increased as mass flux increased. The range of pressure drop penalty factor (1.83 ~ 2.62) was slightly larger than that of heat transfer enhancement factor (1.24 ~ 1.66). Data are compared with available heat transfer and pressure drop correlations.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6325
Author(s):  
Chang-Hyo Son ◽  
Nam-Wook Kim ◽  
Jung-In Yoon ◽  
Sung-Hoon Seol ◽  
Joon-Hyuk Lee

This study investigated the evaporative heat transfer coefficient and pressure drop characteristics of R-1234yf in a horizontal tube with an inner diameter of 6.95 mm under various experimental conditions. The heat transfer coefficient increased with an increase in quality but showed a sharp decrease in the high-quality area. In addition, the heat transfer coefficient increased as the mass flux, heat flux, and saturation temperature increased. Although R-1234yf and R-134a presented similar heat transfer coefficients, that of R-134a was higher. The pressure drop increased with an increase in the quality and mass flux but decreased with an increase in the saturation temperature. The pressure drop of R-134a was larger than that of R-1234yf. In light of the flow pattern diagram by Taitel and Dukler, most of the experiments were included in the annular flow region, and some regions showed intermittent and stratified corrugated flow regions. Kandlikar’s heat transfer coefficient correlation provided the best prediction for the experimental database, with approximately 84% of the predicted data within ±30%. Moreno Quibén and Thome’s equation for pressure drop predicted approximately 88.71% of the data within ±30%.


Author(s):  
Hyun Jin Kim ◽  
Leon Liebenberg ◽  
Anthony M. Jacobi

An experimental investigation was performed to study the heat transfer and pressure drop characteristics of refrigerant R-134a boiling in a chevron-patterned brazed plate heat exchanger (BPHE) at low mass flux. The heat transfer coefficient and pressure drop characteristics are analyzed in relation to varying mass flux (30–50 kgm−2s−1), saturation pressure (675 kPa and 833 kPa), heat flux (0.8 and 2.5 kWm−2), and vapor quality (0.1–0.9). The two-phase pressure drop shows a strong dependence on mass flux and significant saturation temperature drop at high mass flux. The two-phase heat transfer coefficient was both strongly dependent on heat flux (at vapor qualities below 0.4) and on mass flux (at vapor qualities above 0.4). There was also apparent dryout, as depicted by decreased heat transfer at high vapor qualities. These observations suggest that both nucleate and convective boiling mechanisms prevailed. Existing transition correlations however suggest that the experimental data is rather convection-dominant and not a mix of convection and nucleate boiling. The experimental data further strongly suggest the prevalence of both macrochannel and minichannel type flows. Several acknowledged semi-empirical transition criteria were employed to verify our observations. These criteria mostly support our observations that R-134a evaporating at low mass fluxes in a BPHE with a hydraulic diameter of 3.4 mm, has heat transfer and pressure drop characteristics typically indicative of macrochannel as well as minichannel flows. Disagreement however exists with accepted correlations regarding the prevalence of convective or nucleate boiling.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
M. H. M. Grooten ◽  
C. W. M. van der Geld

When traditional air-to-air cooling is too voluminous, heat exchangers with long thermosyphons offer a good alternative. Experiments with a single thermosyphon with a large length-to-diameter ratio (188) and filled with R-134a are presented and analyzed. Saturation temperatures, filling ratios, and angles of inclination have been varied in wide ranges. A higher sensitivity of evaporation heat transfer coefficients on reduced pressure than in previous work has been found. Measurements revealed the effect of pressure or the saturation temperature on condensation heat transfer. The condensate film Reynolds number that marks a transition from one condensation heat transfer regime to another is found to depend on pressure. This effect was not accounted for by correlations from the literature. New correlations are presented to predict condensation and evaporation heat transfer rates.


Author(s):  
Nae-Hyun Kim ◽  
Wang-Kyu Oh ◽  
Jung-Ho Ham ◽  
Do-Young Kim ◽  
Tae-Ryong Shin

Convective boiling heat transfer coefficients of R-22 were obtained in a flat extruded aluminum tube with Dh = 1.41 mm. The test range covered mass flux from 100 to 600 kg/m2 s, heat flux from 5 to 15 kW/m2 and saturation temperature from 5°C to 15°C. The heat transfer coefficient curve shows a decreasing trend after a certain quality (critical quality). The critical quality decreases as the heat flux increases, and as the mass flux decreases. The early dryout at a high heat flux results in a unique ‘cross-over’ of the heat transfer coefficient curves. The heat transfer coefficient increases as the mass flux increases. At a low quality region, however, the effect of mass flux is not prominent. The heat transfer coefficient increases as the saturation temperature increases. The effect of saturation temperature, however, diminishes as the heat flux decreases. Both the Shah and the Kandlikar correlations underpredict the low mass flux and overpredict the high mass flux data.


Sign in / Sign up

Export Citation Format

Share Document