High-temperature electrical resistivity measurements of hcp iron to Mbar pressure in an internally resistive heated diamond anvil cell

2019 ◽  
Vol 39 (4) ◽  
pp. 579-587 ◽  
Author(s):  
Sho Suehiro ◽  
Tatsuya Wakamatsu ◽  
Kenji Ohta ◽  
Kei Hirose ◽  
Yasuo Ohishi
1989 ◽  
Vol 1 (5-6) ◽  
pp. 337-340 ◽  
Author(s):  
M. I. Eremets ◽  
V. V. Struzhkin ◽  
I. A. Trojan

2004 ◽  
Vol 75 (11) ◽  
pp. 5010-5015 ◽  
Author(s):  
Shawn A. Boye ◽  
Daniel Rosén ◽  
Peter Lazor ◽  
Ilia Katardjiev

2018 ◽  
Vol 32 (8) ◽  
pp. 2467-2469
Author(s):  
S. Muruganantham ◽  
S. Kumararaman ◽  
N. R. Tamilselvan ◽  
T. Thaila ◽  
K. Subbaraman

1989 ◽  
Vol 44 (12) ◽  
pp. 1167-1171 ◽  
Author(s):  
G. Chiodelli ◽  
G. Campari-Viganò ◽  
G. Flor

Abstract Electrical resistivity measurements were carried out on polycrystalline YBa2Cu3O7-x at temperatures 300 < T < 1023 K and oxygen partial pressures 5 ·10-7 ≤ po2 ≤ 1 atm. The samples, equilibrated in the range from 5 ·10-4 to 1 atm, show metallic behaviour, the one equilibrated at po2 = 2 ·10-5 shows a transition between metallic and semiconducting behaviour at 920 K, and that equilibrated at po2 = 5 ·10-7 shows semiconducting behaviour: for the latter the relevant resistivity is due to the oxygen-ion migration. The isotherms log σ vs. log po2 (in the temperature range from 723 to 1023 K) show slopes of about 1/6 at 723 K (orthorhombic phase) and about 1/2 at 1023 K (tetragonal phase). These results are discussed in terms of appropriate defect models.


Crystals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 75 ◽  
Author(s):  
Linfei Yang ◽  
Lidong Dai ◽  
Heping Li ◽  
Haiying Hu ◽  
Meiling Hong ◽  
...  

The phase stability of epsomite under a high temperature and high pressure were explored through Raman spectroscopy and electrical conductivity measurements in a diamond anvil cell up to ~623 K and ~12.8 GPa. Our results verified that the epsomite underwent a pressure-induced phase transition at ~5.1 GPa and room temperature, which was well characterized by the change in the pressure dependence of Raman vibrational modes and electrical conductivity. The dehydration process of the epsomite under high pressure was monitored by the variation in the sulfate tetrahedra and hydroxyl modes. At a representative pressure point of ~1.3 GPa, it was found the epsomite (MgSO4·7H2O) started to dehydrate at ~343 K, by forming hexahydrite (MgSO4·6H2O), and then further transformed into magnesium sulfate trihydrate (MgSO4·3H2O) and anhydrous magnesium sulfate (MgSO4) at higher temperatures of 373 and 473 K, respectively. Furthermore, the established P-T phase diagram revealed a positive relationship between the dehydration temperature and the pressure for epsomite.


2009 ◽  
Vol 80 (10) ◽  
pp. 104501 ◽  
Author(s):  
Hanns-Peter Liermann ◽  
Sébastien Merkel ◽  
Lowell Miyagi ◽  
Hans-Rudolf Wenk ◽  
Guoyin Shen ◽  
...  

2008 ◽  
Vol 79 (7) ◽  
pp. 076103 ◽  
Author(s):  
M. Sekar ◽  
N. R. Sanjay Kumar ◽  
P. Ch. Sahu ◽  
N. V. Chandra Shekar ◽  
N. Subramanian

Sign in / Sign up

Export Citation Format

Share Document