A mathematical model to predict the thermal history and microstructure developed in laser surface alloying

2002 ◽  
Vol 12 (3) ◽  
pp. 171-190 ◽  
Author(s):  
J. Dutta Majumdar ◽  
I. Manna
2003 ◽  
Author(s):  
Nilanjan Chakraborty ◽  
Dipankar Chatterjee ◽  
Suman Chakraborty

In this paper, we present a modified k-ε model capable of addressing turbulent molten metal-pool convection in the presence of a continuously evolving phase-change interface during a laser surface alloying process. The phase change aspects of the present problem are addressed using a modified enthalpy-porosity technique. The k-ε model is suitably modified to account for the morphology of the solid-liquid interface. A mathematical model is subsequently utilized to simulate a typical laser alloying process with high power, where effects of turbulent transport can actually be realized. The three-dimensional model is able to predict the species concentration distribution inside the molten pool during alloying, as well as in the entire cross section of the solidified alloy. In order to investigate these effects, the turbulent simulation results are compared with those with laminar transport for same problem parameters. Significant effects of turbulent transport on penetration and the geometrical features of the molten pool are observed which is an outcome of the thermal history of the pool. The thermal history in turn determines the microstructure of the work piece, which finally governs the mechanical properties of the work piece.


Author(s):  
P. A. Molian ◽  
K. H. Khan ◽  
W. E. Wood

In recent years, the effects of chromium on the transformation characteristics of pure iron and the structures produced thereby have been extensively studied as a function of cooling rate. In this paper, we present TEM observations made on specimens of Fe-10% Cr and Fe-20% Cr alloys produced through laser surface alloying process with an estimated cooling rate of 8.8 x 104°C/sec. These two chromium levels were selected in order to study their phase transformation characteristics which are dissimilar in the two cases as predicted by the constitution diagram. Pure iron (C<0.01%, Si<0.01%, Mn<0.01%, S=0.003%, P=0.008%) was electrodeposited with chromium to the thicknesses of 40 and 70μm and then vacuum degassed at 400°F to remove the hydrogen formed during electroplating. Laser surface alloying of chromium into the iron substrate was then performed employing a continuous wave CO2 laser operated at an incident power of 1200 watts. The laser beam, defocussed to a spot diameter of 0.25mm, scanned the material surface at a rate of 30mm/sec, (70 ipm).


Author(s):  
N. Pirch ◽  
G. Backes ◽  
E. W. Kreutz ◽  
X. He ◽  
A. Weisheit ◽  
...  

2019 ◽  
Vol 784 ◽  
pp. 1106-1112 ◽  
Author(s):  
Ke Chen ◽  
Lingguo Zeng ◽  
Zhijun Li ◽  
Linjiang Chai ◽  
Yueyuan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document