equilibrium solidification
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 32)

H-INDEX

16
(FIVE YEARS 3)

2022 ◽  
Vol 1217 (1) ◽  
pp. 012005
Author(s):  
H An ◽  
N J Siambun ◽  
B L Chua ◽  
M J H Gan

Abstract Microstructure and microtexture of rapidly solidified undercooled Ni-Cu alloys were investigated. The characteristic undercooling of Ni80Cu20 alloy was determined as 45K, 90K and 160K. Dendrite deformation due to rapid solidification led to strong deformation microtexture. Due to recrystallization upon annealing after recalescence, many subgrains were formed in the microstructure. Further, annealing the quenched alloy at 900°, new microtextures and subgrains were formed, which was due to recrystallization and dislocation network rearrangement. The results of comparative experiment proved the recrystallization mechanism of the microstructure refinement in the non-equilibrium solidification structure of the undercooled binary alloy


2021 ◽  
Author(s):  
Zhenjie Yao ◽  
Wenjing Ren ◽  
John Allison

Abstract Solidification rates during laser remelting of solid metals occur under solidification conditions that are far from equilibrium conditions. The microstructural evolution and microsegregation behaviors are affected by these conditions. This study comprised an experimental characterization of the ultra-fine microstructure and microsegregation in laser surface remelted regions of a hypoeutectic Al-Cu alloy. The laser scan speed, which controls the cooling rate within the remelted region, was observed to have a significant effect on microstructural features and microsegregation. Dendrite arm spacing was determined to decrease with increasing scan speed and depended on location within the melt pool. A transition of the dendrite morphology was also observed in the melt pools. This transition, which is attributed to the grain orientation change influenced by the laser beam movement, was experimentally characterized. The measured microsegregation profiles show decreasing microsegregation as cooling rate increases which is typically of increasing undercooling and non-equilibrium solidification.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1211
Author(s):  
Maja Vončina ◽  
Aleš Nagode ◽  
Jožef Medved ◽  
Irena Paulin ◽  
Borut Žužek ◽  
...  

When extruding the casted rods from EN AW 2011 aluminium alloys, not only their homogenized structure, but also their extrudable properties were significantly influenced by the hardness of the alloy. In this study, the object of investigations was the EN AW 2011 aluminium alloy, and the effect of homogenisation time on hardness was investigated. First, homogenisation was carried out at 520 °C for different times, imitating industrial conditions. After homogenisation, the samples were analysed by hardness measurements and further characterised by microscopy and image analysis to verify the influence of homogenisation on the resulting microstructural constituents. In addition, non-equilibrium solidification was simulated using the program Thermo-Calc and phase formation during solidification was investigated. The homogenisation process enabled more rounded shape of the Al2Cu eutectic phase, equilibrium formation of the phases, and the precipitation in the matrix, leading to a significant increase in the hardness of the EN AW 2011 aluminium alloy. The experimental data revealed a suitable homogenisation time of 4–6 h at a temperature of 520 °C, enabling optimal extrusion properties.


2021 ◽  
Vol 1939 (1) ◽  
pp. 012018
Author(s):  
Xiaohuia Ao ◽  
Huanxiong Xia ◽  
Jianhua Liu ◽  
QiYang He ◽  
Shengxiang Lin

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 570
Author(s):  
Noah Sargent ◽  
Mason Jones ◽  
Richard Otis ◽  
Andrew A. Shapiro ◽  
Jean-Pierre Delplanque ◽  
...  

Integration of models that capture the complex physics of solidification on the macro and microstructural scale with the flexibility to consider multicomponent materials systems is a significant challenge in modeling additive manufacturing processes. This work aims to link process variables, such as energy density, with non-equilibrium solidification by integrating additive manufacturing process simulations with solidification models that consider thermodynamics and diffusion. Temperature histories are generated using a semi-analytic laser powder bed fusion process model and feed into a CALPHAD-based ICME (CALPHAD: Calculation of Phase Diagrams, ICME: Integrated Computational Materials Engineering) framework to model non-equilibrium solidification as a function of both composition and processing parameters. Solidification cracking susceptibility is modeled as a function of composition, cooling rate, and energy density in Al-Cu Alloys and stainless steel 316L (SS316L). Trends in solidification cracking susceptibility predicted by the model are validated by experimental solidification cracking measurements of Al-Cu alloys. Non-equilibrium solidification in additively manufactured SS316L is investigated to determine if this approach can be applied to commercial materials. Modeling results show a linear relationship between energy density and solidification cracking susceptibility in additively manufactured SS316L. This work shows that integration of process and microstructure models is essential for modeling solidification during additive manufacturing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
K. Sisco ◽  
A. Plotkowski ◽  
Y. Yang ◽  
D. Leonard ◽  
B. Stump ◽  
...  

AbstractAdditive manufacturing of aluminum alloys is largely dominated by a near-eutectic Al-Si compositions, which are highly weldable, but have mechanical properties that are not competitive with conventional wrought Al alloys. In addition, there is a need for new Al alloys with improved high temperature properties and thermal stability for applications in the automotive and aerospace fields. In this work, we considered laser powder bed fusion additive manufacturing of two alloys in the Al–Ce–Mg system, designed as near-eutectic (Al–11Ce–7Mg) and hyper-eutectic (Al–15Ce–9Mg) compositions with respect to the binary L → Al + Al11Ce eutectic reaction. The addition of magnesium is used to promote solid solution strengthening. A custom laser scan pattern was used to reduce the formation of keyhole porosity, which was caused by excessive vaporization due to the high vapor pressure of magnesium. The microstructure and tensile mechanical properties of the alloys were characterized in the as-fabricated condition and following hot isostatic pressing. The two alloys exhibit significant variations in solidification structure morphology. These variations in non-equilibrium solidification structure were rationalized using a combination of thermodynamic and thermal modeling. Both alloys showed higher yield strength than AM Al-10Si-Mg for temperatures up to 350 °C and better strength retention at elevated temperatures than additively manufactured Scalmaloy.


Sign in / Sign up

Export Citation Format

Share Document