scholarly journals Bacillus subtilis iolU encodes an additional NADP+-dependent scyllo-inositol dehydrogenase

2017 ◽  
Vol 81 (5) ◽  
pp. 1026-1032 ◽  
Author(s):  
Dong-Min Kang ◽  
Kosei Tanaka ◽  
Shinji Takenaka ◽  
Shu Ishikawa ◽  
Ken-ichi Yoshida
2010 ◽  
Vol 76 (24) ◽  
pp. 7972-7980 ◽  
Author(s):  
Petra R. A. Kohler ◽  
Jasmine Y. Zheng ◽  
Elke Schoffers ◽  
Silvia Rossbach

ABSTRACT The nitrogen-fixing symbiont of alfalfa, Sinorhizobium meliloti, is able to use myo-inositol as the sole carbon source. Putative inositol catabolism genes (iolA and iolRCDEB) have been identified in the S. meliloti genome based on their similarities with the Bacillus subtilis iol genes. In this study, functional mutational analysis revealed that the iolA and iolCDEB genes are required for growth not only with the myo-isomer but also for growth with scyllo- and d-chiro-inositol as the sole carbon source. An additional, hypothetical dehydrogenase of the IdhA/MocA/GFO family encoded by the smc01163 gene was found to be essential for growth with scyllo-inositol, whereas the idhA-encoded myo-inositol dehydrogenase was responsible for the oxidation of d-chiro-inositol. The putative regulatory iolR gene, located upstream of iolCDEB, encodes a repressor of the iol genes, negatively regulating the activity of the myo- and the scyllo-inositol dehydrogenases. Mutants with insertions in the iolA, smc01163, and individual iolRCDE genes could not compete against the wild type in a nodule occupancy assay on alfalfa plants. Thus, a functional inositol catabolic pathway and its proper regulation are important nutritional or signaling factors in the S. meliloti-alfalfa symbiosis.


2010 ◽  
Vol 432 (2) ◽  
pp. 237-247 ◽  
Author(s):  
Karin E. van Straaten ◽  
Hongyan Zheng ◽  
David R. J. Palmer ◽  
David A. R. Sanders

Inositol dehydrogenase from Bacillus subtilis (BsIDH) is a NAD+-dependent enzyme that catalyses the oxidation of the axial hydroxy group of myo-inositol to form scyllo-inosose. We have determined the crystal structures of wild-type BsIDH and of the inactive K97V mutant in apo-, holo- and ternary complexes with inositol and inosose. BsIDH is a tetramer, with a novel arrangement consisting of two long continuous β-sheets, formed from all four monomers, in which the two central strands are crossed over to form the core of the tetramer. Each subunit in the tetramer consists of two domains: an N-terminal Rossmann fold domain containing the cofactor-binding site, and a C-terminal domain containing the inositol-binding site. Structural analysis allowed us to determine residues important in cofactor and substrate binding. Lys97, Asp172 and His176 are the catalytic triad involved in the catalytic mechanism of BsIDH, similar to what has been proposed for related enzymes and short-chain dehydrogenases. Furthermore, a conformational change in the nicotinamide ring was observed in some ternary complexes, suggesting hydride transfer to the si-face of NAD+. Finally, comparison of the structure and sequence of BsIDH with other putative inositol dehydrogenases allowed us to differentiate these enzymes into four subfamilies based on six consensus sequence motifs defining the cofactor- and substrate-binding sites.


Gene ◽  
1991 ◽  
Vol 108 (1) ◽  
pp. 121-125 ◽  
Author(s):  
Fujita Yasutaro ◽  
Shindo Katsuhiro ◽  
Miwa Yasuhiko ◽  
Yoshida Ken-ichi

2006 ◽  
Vol 84 (4) ◽  
pp. 522-527 ◽  
Author(s):  
Richard Daniellou ◽  
Hongyan Zheng ◽  
David RJ Palmer

Inositol dehydrogenase (EC 1.1.1.18) from Bacillus subtilis catalyzes the oxidation of myo-inositol to scyllo-inosose by transfer of the equatorial hydride of the substrate to NAD+. This is a key enzyme in the metabolism of myo-inositol, a primary carbon source for soil bacteria. In light of our recent discovery that the enzyme has a broad substrate spectrum while maintaining high stereoselectivity, we seek a more thorough understanding of the enzyme and its active site. We have examined the kinetics of the recombinant enzyme, and synthesized fluorinated substrate analogues as competitive inhibitors. We have evaluated all rate constants in the ordered, sequential Bi Bi mechanism. No steady-state kinetic isotope effect is observed using myo-[2-2H]-inositol, indicating that the chemical step of the reaction is not rate-limiting. We have synthesized the substrate analogs 2-deoxy-2-fluoro-myo-inositol, its equatorial analog 1-deoxy-1-fluoro-scyllo-inositol, the gem-difluorinated analog 1-deoxy-1,1-difluoro-scyllo-inositol, and the sugar analog α-D-glucosyl fluoride. Of these, 1-deoxy-1-fluoro-scyllo-inositol showed no inhibition, while all others tested had Ki values comparable to the Km values of the analogous substrates myo-inositol and α-D-glucose.Key words: inositol dehydrogenase, enzyme mechanism, kinetics, competitive inhibitor, substrate analogue.


2005 ◽  
Vol 3 (3) ◽  
pp. 401 ◽  
Author(s):  
Richard Daniellou ◽  
Christopher P. Phenix ◽  
Pui Hang Tam ◽  
Michael C. Laliberte ◽  
David R. J. Palmer

2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Dong-Min Kang ◽  
Christophe Michon ◽  
Tetsuro Morinaga ◽  
Kosei Tanaka ◽  
Shinji Takenaka ◽  
...  

Author(s):  
Dwight Anderson ◽  
Charlene Peterson ◽  
Gursaran Notani ◽  
Bernard Reilly

The protein product of cistron 3 of Bacillus subtilis bacteriophage Ø29 is essential for viral DNA synthesis and is covalently bound to the 5’-termini of the Ø29 DNA. When the DNA-protein complex is cleaved with a restriction endonuclease, the protein is bound to the two terminal fragments. The 28,000 dalton protein can be visualized by electron microscopy as a small dot and often is seen only when two ends are in apposition as in multimers or in glutaraldehyde-fixed aggregates. We sought to improve the visibility of these small proteins by use of antibody labeling.


Sign in / Sign up

Export Citation Format

Share Document