Tunable ultrashort electro-optical power divider using coupled photonic crystal waveguides

2012 ◽  
Vol 59 (3) ◽  
pp. 218-225 ◽  
Author(s):  
Cheng-Yang Liu
2015 ◽  
Vol 29 (15) ◽  
pp. 1550073 ◽  
Author(s):  
Hong Wang ◽  
Lingjuan He

We proposed a new kind of 1×4 optical power splitter composed of one input photonic crystal (PC) waveguide (PCW) and two PC branches with a triangular lattice of air holes. By employing the coupling between a defect region and one input, four output PCWs, the input power can be efficiently split into four output ports. The total transmittance as high as 99.4% at the wavelength 1550 nm is achieved. By modifying two holes at junction area, the input power can be almost evenly split into four parts with a bandwidth larger than 80 nm. It provides a new method and a compact model to split input power into multiple output ports in PCW devices and may find practical applications in future photonic integrated circuits.


2017 ◽  
Vol 38 (2) ◽  
Author(s):  
Nazanin Mesri ◽  
Hamed Alipour-Banaei

AbstractIn this paper, an optical power divider with one input and four outputs has been proposed in a two-dimensional photonic crystal with triangular lattice and simulated using dielectric holes in an air substrate. The dividing properties of the power divider have been numerically simulated and analyzed using the plane wave expansion and finite difference time domain methods. The results show that the transmittance of this divider can be as high as 94.22 % for


2009 ◽  
Vol 58 (2) ◽  
pp. 1014
Author(s):  
Zhu Gui-Xin ◽  
Yu Tian-Bao ◽  
Chen Shu-Wen ◽  
Shi Zhe ◽  
Hu Shu-Juan ◽  
...  

PIERS Online ◽  
2010 ◽  
Vol 6 (3) ◽  
pp. 273-278 ◽  
Author(s):  
David J. Moss ◽  
B. Corcoran ◽  
C. Monat ◽  
Christian Grillet ◽  
T. P. White ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 250
Author(s):  
Vakhtang Jandieri ◽  
Ramaz Khomeriki ◽  
Tornike Onoprishvili ◽  
Daniel Erni ◽  
Levan Chotorlishvili ◽  
...  

This review paper summarizes our previous findings regarding propagation characteristics of band-gap temporal solitons in photonic crystal waveguides with Kerr-type nonlinearity and a realization of functional and easily scalable all-optical NOT, AND and NAND logic gates. The proposed structure consists of a planar air-hole type photonic crystal in crystalline silicon as the nonlinear background material. A main advantage of proposing the gap-soliton as a signal carrier is that, by operating in the true time-domain, the temporal soliton maintains a stable pulse envelope during each logical operation. Hence, multiple concatenated all-optical logic gates can be easily realized paving the way to multiple-input ultrafast full-optical digital signal processing. In the suggested setup, due to the gap-soliton features, there is no need to amplify the output signal after each operation which can be directly used as a new input signal for another logical operation. The efficiency of the proposed logic gates as well as their scalability is validated using our original rigorous theoretical formalism confirmed by full-wave computational electromagnetics.


2012 ◽  
Vol 37 (15) ◽  
pp. 3108 ◽  
Author(s):  
Momchil Minkov ◽  
Vincenzo Savona

Sign in / Sign up

Export Citation Format

Share Document