Single photon counting at telecom wavelength and quantum key distribution

2004 ◽  
Vol 51 (9-10) ◽  
pp. 1399-1415 ◽  
Author(s):  
Alexei Trifonov ◽  
Darius Subacius ◽  
Audrius Berzanskis ◽  
Anton Zavriyev
2009 ◽  
Vol 9 (7&8) ◽  
pp. 683-692
Author(s):  
G.B. Xavier ◽  
T. Ferreira da Silva ◽  
G. Vilela de Faria ◽  
G.P. Temporao ◽  
J.P. von der Weid

A simple protocol which takes advantage of the inherent random times of detections in single photon counting modules is presented for random active basis choices when using entanglement-based protocols for Quantum Key Distribution (QKD). It may also be applicable to the BB84 protocol in certain cases. The scheme presented uses the single photon detectors already present on a QKD setup, working on the same rate as the system is capable of detecting, and is, therefore, not limited by the output rates of quantum random number generators. This protocol only requires small hardware modifications making it an attractive solution. We perform a proof-of-principle experiment employing a spontaneous parametric down-conversion process in a $\chi^{(2)}$ non-linear crystal to demonstrate the feasibility of our scheme, and show that the generated sequence passes randomness tests.


2021 ◽  
Author(s):  
Christopher L. Morrison ◽  
Francesco Graffitti ◽  
Zhe Xian Koong ◽  
Nick G. Stoltz ◽  
Dirk Bouwmeester ◽  
...  

Author(s):  
Mike Bruce ◽  
Rama R. Goruganthu ◽  
Shawn McBride ◽  
David Bethke ◽  
J.M. Chin

Abstract For time resolved hot carrier emission from the backside, an alternate approach is demonstrated termed single point PICA. The single point approach records time resolved emission from an individual transistor using time-correlated-single-photon counting and an avalanche photo-diode. The avalanche photo-diode has a much higher quantum efficiency than micro-channel plate photo-multiplier tube based imaging cameras typically used in earlier approaches. The basic system is described and demonstrated from the backside on a ring oscillator circuit.


Author(s):  
Maria Concetta Maccarone ◽  
Giovanni La Rosa ◽  
Osvaldo Catalano ◽  
Salvo Giarrusso ◽  
Alberto Segreto ◽  
...  

AbstractUVscope is an instrument, based on a multi-pixel photon detector, developed to support experimental activities for high-energy astrophysics and cosmic ray research. The instrument, working in single photon counting mode, is designed to directly measure light flux in the wavelengths range 300-650 nm. The instrument can be used in a wide field of applications where the knowledge of the nocturnal environmental luminosity is required. Currently, one UVscope instrument is allocated onto the external structure of the ASTRI-Horn Cherenkov telescope devoted to the gamma-ray astronomy at very high energies. Being co-aligned with the ASTRI-Horn camera axis, UVscope can measure the diffuse emission of the night sky background simultaneously with the ASTRI-Horn camera, without any interference with the main telescope data taking procedures. UVscope is properly calibrated and it is used as an independent reference instrument for test and diagnostic of the novel ASTRI-Horn telescope.


Sign in / Sign up

Export Citation Format

Share Document