The removal of heavy metals from aqueous effluents by immobilised fungal biomass

1988 ◽  
Vol 9 (9) ◽  
pp. 991-998 ◽  
Author(s):  
D. Lewis ◽  
R. J. Kiff
2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Ismael Acosta-Rodríguez ◽  
Juan F. Cárdenas-González ◽  
Adriana S. Rodríguez Pérez ◽  
Juana Tovar Oviedo ◽  
Víctor M. Martínez-Juárez

The objective of this work was to study the resistance and removal capacity of heavy metals by the fungusAspergillus niger. We analyzed the resistance to some heavy metals by dry weight and plate: the fungus grew in 2000 ppm of zinc, lead, and mercury, 1200 and 1000 ppm of arsenic (III) and (VI), 800 ppm of fluor and cobalt, and least in cadmium (400 ppm). With respect to their potential of removal of heavy metals, this removal was achieved for zinc (100%), mercury (83.2%), fluor (83%), cobalt (71.4%), fairly silver (48%), and copper (37%). The ideal conditions for the removal of 100 mg/L of the heavy metals were 28°C, pH between 4.0 and 5.5, 100 ppm of heavy metal, and 1 g of fungal biomass.


2011 ◽  
Vol 2 (3) ◽  
pp. 1-8 ◽  
Author(s):  
Sasmita Sabat ◽  
◽  
R V Kavitha R V Kavitha ◽  
Shantha S L Shantha S L ◽  
Gopika Nair ◽  
...  

2013 ◽  
Vol 12 (3) ◽  
pp. 239-247

The removal of heavy metals from wastewaters is a matter of paramount importance due to the fact that their high toxicity causes major environmental pollution problems. One of the most efficient, applicable and low cost methods for the removal of toxic metals from aqueous solutions is that of their adsorption on an inorganic adsorbent. In order to achieve high efficiency, it is important to understand the influence of the solution parameters on the extent of the adsorption, as well as the kinetics of the adsorption. In the present work, the adsorption of Cu(II) species onto TiO2 surface was studied. It was found that the adsorption is a rapid process and it is not affected by the value of ionic strength. In addition, it was found that by increasing the pH, the adsorbed amount of Cu2+ ions and the value of the adsorption constant increase, whereas the value of the lateral interaction energy decreases.


2020 ◽  
Vol 57 (2) ◽  
pp. 109-114
Author(s):  
Amirhossein Dolatzadeh khiyavi ◽  
Reza Hajimohammadi ◽  
Hossein Amani ◽  
Hadi Soltani

2011 ◽  
Author(s):  
Jesús Sánchez-Martín ◽  
Víctor Encinas-Sánchez ◽  
Jesús Beltrán-Heredia

Sign in / Sign up

Export Citation Format

Share Document