Regulation of epithelial cell shape and polarity by cell - cell adhesion (Review)

2002 ◽  
Vol 19 (2) ◽  
pp. 113-120 ◽  
Author(s):  
Elisabeth Knust
2007 ◽  
Vol 178 (2) ◽  
pp. 323-335 ◽  
Author(s):  
Lene N. Nejsum ◽  
W. James Nelson

Mechanisms involved in maintaining plasma membrane domains in fully polarized epithelial cells are known, but when and how directed protein sorting and trafficking occur to initiate cell surface polarity are not. We tested whether establishment of the basolateral membrane domain and E-cadherin–mediated epithelial cell–cell adhesion are mechanistically linked. We show that the basolateral membrane aquaporin (AQP)-3, but not the equivalent apical membrane AQP5, is delivered in post-Golgi structures directly to forming cell–cell contacts where it co-accumulates precisely with E-cadherin. Functional disruption of individual components of a putative lateral targeting patch (e.g., microtubules, the exocyst, and soluble N-ethylmaleimide–sensitive factor attachment protein receptors) did not inhibit cell–cell adhesion or colocalization of the other components with E-cadherin, but each blocked AQP3 delivery to forming cell–cell contacts. Thus, components of the lateral targeting patch localize independently of each other to cell–cell contacts but collectively function as a holocomplex to specify basolateral vesicle delivery to nascent cell–cell contacts and immediately initiate cell surface polarity.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1544 ◽  
Author(s):  
Vivian W. Tang

The epithelial lateral membrane plays a central role in the integration of intercellular signals and, by doing so, is a principal determinant in the emerging properties of epithelial tissues. Mechanical force, when applied to the lateral cell–cell interface, can modulate the strength of adhesion and influence intercellular dynamics. Yet the relationship between mechanical force and epithelial cell behavior is complex and not completely understood. This commentary aims to provide an investigative look at the usage of cellular forces at the epithelial cell–cell adhesion interface.


2019 ◽  
Author(s):  
Kate E. Cavanaugh ◽  
Michael F. Staddon ◽  
Ed Munro ◽  
Shiladitya Banerjee ◽  
Margaret L. Gardel

AbstractMorphogenetic movements require tight spatiotemporal control over cell-cell junction lengths. Contractile forces, acting at adherens junctions, alter cell-cell contact lengths in a cyclic fashion as a mechanical ratchet. Pulsatile RhoA activity is thought to drive ratcheting through acute periods of junction contraction followed by stabilization. Currently, we lack a mechanistic understanding of if and how RhoA activity governs junction length and subsequent cell shape within epithelia. In this study we use optogenetics to exogenously control RhoA activity in model Caco-2 epithelium. We find that at short timescales, RhoA activation drives reversible junction contraction. Sustained RhoA activity drives irreversible junction shortening but the amount of shortening saturates for a single pulse. To capture these data, we develop a vertex model modified to include strain-dependent junction length and tension remodeling. We find that, to account for experimental data, tension remodeling requires a strain-dependent threshold. Our model predicts that temporal structuring of RhoA activity allows for subsequent tension remodeling events to overcome the limited shortening within a single pulse and this is confirmed by our experimental data. We find that RhoA-mediated junction remodeling requires activities of formin and dynamin, indicating the closely inter-connected activities of contractility, E-cadherin clustering, and endocytosis. Junction length is therefore regulated by the coordinated action of RhoA-mediated contractility, membrane trafficking, and adhesion receptor remodeling. Altogether these data provide insights into the underlying molecular and biophysical mechanisms of RhoA-mediated regulation of epithelial cell shape.


Author(s):  
Phillip W. Miller ◽  
Donald N. Clarke ◽  
William I. Weis ◽  
Christopher J. Lowe ◽  
W. James Nelson

1994 ◽  
Vol 2 (5) ◽  
pp. 417-428 ◽  
Author(s):  
Sergey V. Litvinov ◽  
Hellen A. M. Bakker ◽  
Maia M. Gourevitch ◽  
Markwin P. Velders ◽  
Sven O. Warnaar

Sign in / Sign up

Export Citation Format

Share Document