Short term wind power forecasting using machine learning techniques

2020 ◽  
Vol 23 (1) ◽  
pp. 145-156 ◽  
Author(s):  
Aditya Chaudhary ◽  
Akash Sharma ◽  
Ayush Kumar ◽  
Karan Dikshit ◽  
Neeraj Kumar
2014 ◽  
Vol 705 ◽  
pp. 284-288
Author(s):  
Hai Jian Shao ◽  
Hai Kun Wei

This paper investigates the short-term wind power forecasting and demonstrates accurate modeling, which utilizes two representative heuristic algorithms (i.e. wavelet neural network (WNN) and Multilayer Perceptron (MLP)), and statistical machine learning techniques (i.e. Support Vector Regression (SVR)). The proposed method generates the performances of different approaches for random time series, characterized with high accuracy and high generalization capability. The employed data is obtained through Sampling equipment in Real Wind Power Plants (Power generation equipment is Dongfang Steam Turbine Co., Ltd. weak wind turbine type--FD77 with German REpower company technology). The main innovation of this paper comes from: (a) problem may encounter in the real application is in consideration such as corrupt, missing value and noisy data. (b) Data lag estimation are provided to investigate the data distribution and obtain the best input variables, respectively. (c) Comparison between MLP neural networks, WNN and SVR with optimized kernel parameters based on Grid-search method are provided to demonstrate the best forecasting approaches. The purpose of this paper is to provide a method with reference value for short-term wind power forecasting.


2020 ◽  
Vol 12 (2) ◽  
pp. 84-99
Author(s):  
Li-Pang Chen

In this paper, we investigate analysis and prediction of the time-dependent data. We focus our attention on four different stocks are selected from Yahoo Finance historical database. To build up models and predict the future stock price, we consider three different machine learning techniques including Long Short-Term Memory (LSTM), Convolutional Neural Networks (CNN) and Support Vector Regression (SVR). By treating close price, open price, daily low, daily high, adjusted close price, and volume of trades as predictors in machine learning methods, it can be shown that the prediction accuracy is improved.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 338
Author(s):  
Lorenzo Donadio ◽  
Jiannong Fang ◽  
Fernando Porté-Agel

In the past two decades, wind energy has been under fast development worldwide. The dramatic increase of wind power penetration in electricity production has posed a big challenge to grid integration due to the high uncertainty of wind power. Accurate real-time forecasts of wind farm power outputs can help to mitigate the problem. Among the various techniques developed for wind power forecasting, the hybridization of numerical weather prediction (NWP) and machine learning (ML) techniques such as artificial neural networks (ANNs) are attracting many researchers world-wide nowadays, because it has the potential to yield more accurate forecasts. In this paper, two hybrid NWP and ANN models for wind power forecasting over a highly complex terrain are proposed. The developed models have a fine temporal resolution and a sufficiently large prediction horizon (>6 h ahead). Model 1 directly forecasts the energy production of each wind turbine. Model 2 forecasts first the wind speed, then converts it to the power using a fitted power curve. Effects of various modeling options (selection of inputs, network structures, etc.) on the model performance are investigated. Performances of different models are evaluated based on four normalized error measures. Statistical results of model predictions are presented with discussions. Python was utilized for task automation and machine learning. The end result is a fully working library for wind power predictions and a set of tools for running the models in forecast mode. It is shown that the proposed models are able to yield accurate wind farm power forecasts at a site with high terrain and flow complexities. Especially, for Model 2, the normalized Mean Absolute Error and Root Mean Squared Error are obtained as 8.76% and 13.03%, respectively, lower than the errors reported by other models in the same category.


Sign in / Sign up

Export Citation Format

Share Document