Estimation to the turbulent kinetic energy dissipation rate and bottom shear stress in the tidal bottom boundary layer of the Yellow Sea

2007 ◽  
Vol 17 (3) ◽  
pp. 289-297 ◽  
Author(s):  
Liu Zhiyu ◽  
Wei Hao
2018 ◽  
Vol 48 (6) ◽  
pp. 1243-1255 ◽  
Author(s):  
Chao Huang ◽  
Yongsheng Xu

AbstractThe global dissipation caused by bottom boundary layer drag is one of the major pathways for the consumption of kinetic energy in the deep ocean. However, the spatial distribution and global integral of the drag dissipation are still debatable. This paper presents an updated estimate of the dissipation rate, using the barotropic component of surface geostrophic currents and 632 in situ velocity measurements. Also, the seafloor roughness is proposed as a parameter of drag efficiency in the parameterized method. The results provide a map of the drag dissipation rate with a global integral of ~0.26 TW. Approximately 66% of this dissipation occurs in the Southern Ocean, which is consistent with the proportion of wind power input into this region. Building upon the work in previous studies on the bottom boundary layer drag, more long-period observations are used, eliminating the influence of the baroclinic contribution to the surface geostrophic currents in the construction of the bottom velocity, and taking topographic roughness into account. The estimates have implications for the maintenance of density structure in the deep ocean and understanding of the kinetic energy budget.


2012 ◽  
Vol 7 (1) ◽  
pp. 53-69
Author(s):  
Vladimir Dulin ◽  
Yuriy Kozorezov ◽  
Dmitriy Markovich

The present paper reports PIV (Particle Image Velocimetry) measurements of turbulent velocity fluctuations statistics in development region of an axisymmetric free jet (Re = 28 000). To minimize measurement uncertainty, adaptive calibration, image processing and data post-processing algorithms were utilized. On the basis of theoretical analysis and direct measurements, the paper discusses effect of PIV spatial resolution on measured statistical characteristics of turbulent fluctuations. Underestimation of the second-order moments of velocity derivatives and of the turbulent kinetic energy dissipation rate due to a finite size of PIV interrogation area and finite thickness of laser sheet was analyzed from model spectra of turbulent velocity fluctuations. The results are in a good agreement with the measured experimental data. The paper also describes performance of possible ways to account for unresolved small-scale velocity fluctuations in PIV measurements of the dissipation rate. In particular, a turbulent viscosity model can be efficiently used to account for the unresolved pulsations in a free turbulent flow


Sign in / Sign up

Export Citation Format

Share Document