Monin–Obukhov Similarity Functions of the Structure Parameter of Temperature and Turbulent Kinetic Energy Dissipation Rate in the Stable Boundary Layer

2005 ◽  
Vol 116 (2) ◽  
pp. 253-276 ◽  
Author(s):  
O. K. Hartogensis ◽  
H. A. R. De. bruin
2006 ◽  
Vol 63 (4) ◽  
pp. 1291-1307 ◽  
Author(s):  
B. B. Balsley ◽  
R. G. Frehlich ◽  
M. L. Jensen ◽  
Y. Meillier

Abstract Some 50 separate high-resolution profiles of small-scale turbulence defined by the energy dissipation rate (ɛ), horizontal wind speed, and temperature from near the surface, through the nighttime stable boundary layer (SBL), and well into the residual layer are used to compare the various definitions of SBL height during nighttime stable conditions. These profiles were obtained during postmidnight periods on three separate nights using the Tethered Lifting System (TLS) during the Cooperative Atmosphere–Surface Exchange Study (CASES-99) campaign in east-central Kansas, October 1999. Although the number of profiles is insufficient to make any definitive conclusions, the results suggest that, under most conditions, the boundary layer top can be reasonably estimated in terms of a very significant decrease in the energy dissipation rate (i.e., the mixing height) with height. In the majority of instances this height lies slightly below the height of a pronounced minimum in wind shear and slightly above a maximum in N 2, where N is the Brunt–Väisälä frequency. When combined with flux measurements and vertical velocity variance data obtained from the nearby 55-m tower, the results provide additional insights into SBL processes, even when the boundary layer, by any definition, extends to heights well above the top of the tower. Both the TLS profiles and tower data are then used for preliminary high-resolution studies into various categories of SBL structure, including the so-called upside-down boundary layer.


2021 ◽  
Author(s):  
Federica Gucci ◽  
Lorenzo Giovannini ◽  
Dino Zardi ◽  
Nikki Vercauteren

<p>The broad variety of phenomena occurring on multiple scales under stably stratified conditions and their complex interactions make it difficult to get a full description of the Stable Boundary Layer (SBL). Near-surface turbulence may be intermittent and highly anisotropic even at small scales. By studying the invariants of the anisotropy Reynolds stress tensor, it is possible to analyse the eddy kinetic energy distribution over the three components of the flow. Recent analyses of SBL turbulence data highlighted a prevalence of one-component limiting state of anisotropy. The causes of this particular limiting state are not fully understood, but there is evidence that submeso activity influences turbulence topology.<span> </span></p><p>This open question motivated the present work, that addresses the issue from the point of view of space dimensionality. In large-scale atmospheric and oceanic dynamics it is well known that turbulent motions may transfer energy both to the large and to the small scales, according to density stratification and rotation. These two properties act as constraints on the flow, giving it a 2D structure, and leading turbulence to be more complex than the homogeneous and isotropic case. For a SBL in low-wind speed conditions, atmospheric stratification might be very strong and we investigate if some of the peculiar characteristics of this regime might be related to a quasi-2D dynamics, with the occurrence of an inverse energy cascade, typical of 2D-like turbulence.</p><p>Energy exchanges across larger and smaller scales are studied by analysing the direction of the momentum flux with different methods, including a coarse-graining approach based on Large Eddy Simulation (LES) theory. The SnoHATS dataset was used to this purpose, where two vertically-separated horizontal arrays of sonic anemometers over the Plaine Morte Glacier (Switzerland) allowed the computation of the full three-dimensional velocity gradient. In order to fully characterize the energy exchanges according to different states of turbulence anisotropy, energy conversion processes between eddy kinetic and potential energy have also been considered and analysed at different heights. To this purpose, the dataset FLOSSII was used, providing turbulence measurements up to 30 m above a flat grass surface, often covered by snow.<span> </span></p><p>Results seem to suggest that turbulent kinetic energy in the SBL is distributed mainly in one component more as a consequence of wave-turbulence interactions than of development of 2D-like turbulence. This gives insights on mechanisms driving turbulence anisotropy that might be used to improve turbulence parameterizations in the SBL.</p>


2012 ◽  
Vol 7 (1) ◽  
pp. 53-69
Author(s):  
Vladimir Dulin ◽  
Yuriy Kozorezov ◽  
Dmitriy Markovich

The present paper reports PIV (Particle Image Velocimetry) measurements of turbulent velocity fluctuations statistics in development region of an axisymmetric free jet (Re = 28 000). To minimize measurement uncertainty, adaptive calibration, image processing and data post-processing algorithms were utilized. On the basis of theoretical analysis and direct measurements, the paper discusses effect of PIV spatial resolution on measured statistical characteristics of turbulent fluctuations. Underestimation of the second-order moments of velocity derivatives and of the turbulent kinetic energy dissipation rate due to a finite size of PIV interrogation area and finite thickness of laser sheet was analyzed from model spectra of turbulent velocity fluctuations. The results are in a good agreement with the measured experimental data. The paper also describes performance of possible ways to account for unresolved small-scale velocity fluctuations in PIV measurements of the dissipation rate. In particular, a turbulent viscosity model can be efficiently used to account for the unresolved pulsations in a free turbulent flow


Sign in / Sign up

Export Citation Format

Share Document