Spatial modelling of wildland fire danger for risk analysis and conflict resolution in Malaysia: linking Fire Danger Rating Systems (FDRS) with Wildfire Threat Rating Systems (WTRS)

2012 ◽  
Vol 27 (4) ◽  
pp. 291-313 ◽  
Author(s):  
Hamid Assilzadeh ◽  
William J. de Groot ◽  
Jason K. Levy
2015 ◽  
Vol 3 (11) ◽  
pp. 6997-7051 ◽  
Author(s):  
M. C. De Jong ◽  
M. J. Wooster ◽  
K. Kitchen ◽  
C. Manley ◽  
R. Gazzard

Abstract. Wildfires in the United Kingdom (UK) can pose a threat to people, infrastructure and the natural environment (e.g. to the carbon in peat soils), and their simultaneous occurrence within and across UK regions can periodically place considerable stress upon the resources of Fire and Rescue Services. "Fire danger" rating systems (FDRS) attempt to anticipate periods of heightened fire risk, primarily for early-warning purposes. The UK FDRS, termed the Met Office Fire Severity Index (MOFSI) is based on the Fire Weather Index (FWI) component of the Canadian Forest FWI System. MOFSI currently provides operational mapping of landscape fire danger across England and Wales using a simple thresholding of the final FWI component of the Canadian System. Here we explore a climatology of the full set of FWI System components across the entire UK (i.e. extending to Scotland and Northern Ireland), calculated from daily 2 km gridded numerical weather prediction data, supplemented by meteorological station observations. We used this to develop a percentile-based calibration of the FWI System optimised for UK conditions. We find the calibration to be well justified, since for example the values of the "raw" uncalibrated FWI components corresponding to a very "extreme" (99th percentile) fire danger situation can vary by up to an order of magnitude across UK regions. Therefore, simple thresholding of the uncalibrated component values (as is currently applied) may be prone to large errors of omission and commission with respect to identifying periods of significantly elevated fire danger compared to "routine" variability. We evaluate our calibrated approach to UK fire danger rating against records of wildfire occurrence, and find that the Fine Fuel Moisture Code (FFMC), Initial Spread Index (ISI) and final FWI component of the FWI system generally have the greatest predictive skill for landscape fires in Great Britain, with performance varying seasonally and by land cover type. At the height of the most recent severe wildfire period in the UK (2 May 2011), 50 % of all wildfires occurred in areas where the FWI component exceeded the 99th percentile, and for each of the ten most serious wildfire events that occurred in the 2010–2012 period, at least one FWI component per event was found to surpass the 95th percentile. Overall, we demonstrate the significant advantages of using a calibrated, percentile-based approach for classifying UK fire danger, and believe our findings provide useful insights for any future redevelopment of the current operational UK FDRS.


1998 ◽  
Vol 8 (1) ◽  
pp. 37 ◽  
Author(s):  
V Gouma ◽  
A Chronopoulou-Sereli

A mountain area in Southeastern Greece exposed to wildland fire problems was used to establish a method for fire danger zoning. Meteorological risk (MR), fuel susceptibility (FS) and fire occurrence (FO) maps are created. The method integrates these maps and produces the constant and variable danger (CFD,VFD) zones that require respective activities for wildland fire prevention. A Geographic Information System (GIS) was used to perform the overlay analysis of thematic maps and delineate the fire danger zones.


2016 ◽  
Vol 16 (5) ◽  
pp. 1217-1237 ◽  
Author(s):  
Mark C. de Jong ◽  
Martin J. Wooster ◽  
Karl Kitchen ◽  
Cathy Manley ◽  
Rob Gazzard ◽  
...  

Abstract. Wildfires in the United Kingdom (UK) pose a threat to people, infrastructure and the natural environment. During periods of particularly fire-prone weather, wildfires can occur simultaneously across large areas, placing considerable stress upon the resources of fire and rescue services. Fire danger rating systems (FDRSs) attempt to anticipate periods of heightened fire risk, primarily for early-warning and preparedness purposes. The UK FDRS, termed the Met Office Fire Severity Index (MOFSI), is based on the Fire Weather Index (FWI) component of the Canadian Forest FWI System. The MOFSI currently provides daily operational mapping of landscape fire danger across England and Wales using a simple thresholding of the final FWI component of the Canadian FWI System. However, it is known that the system has scope for improvement. Here we explore a climatology of the six FWI System components across the UK (i.e. extending to Scotland and Northern Ireland), calculated from daily 2km × 2km gridded numerical weather prediction data and supplemented by long-term meteorological station observations. We used this climatology to develop a percentile-based calibration of the FWI System, optimised for UK conditions. We find this approach to be well justified, as the values of the "raw" uncalibrated FWI components corresponding to a very "extreme" (99th percentile) fire danger situation vary by more than an order of magnitude across the country. Therefore, a simple thresholding of the uncalibrated component values (as is currently applied in the MOFSI) may incur large errors of omission and commission with respect to the identification of periods of significantly elevated fire danger. We evaluate our approach to enhancing UK fire danger rating using records of wildfire occurrence and find that the Fine Fuel Moisture Code (FFMC), Initial Spread Index (ISI) and FWI components of the FWI System generally have the greatest predictive skill for landscape fire activity across Great Britain, with performance varying seasonally and by land cover type. At the height of the most recent severe wildfire period in the UK (2 May 2011), 50 % of all wildfires occurred in areas where the FWI component exceeded the 99th percentile. When all wildfire events during the 2010–2012 period are considered, the 75th, 90th and 99th percentiles of at least one FWI component were exceeded during 85, 61 and 18 % of all wildfires respectively. Overall, we demonstrate the significant advantages of using a percentile-based calibration approach for classifying UK fire danger, and believe that our findings provide useful insights for future development of the current operational MOFSI UK FDRS.


2002 ◽  
Vol 11 (4) ◽  
pp. 183 ◽  
Author(s):  
J. D. Carlson ◽  
Robert E. Burgan ◽  
David M. Engle ◽  
Justin R. Greenfield

This paper describes the Oklahoma Fire Danger Model, an operational fire danger rating system for the state of Oklahoma (USA) developed through joint efforts of Oklahoma State University, the University of Oklahoma, and the Fire Sciences Laboratory of the USDA Forest Service in Missoula, Montana. The model is an adaptation of the National Fire Danger Rating System (NFDRS) to Oklahoma, but more importantly, represents the first time anywhere that NFDRS has been implemented operationally using hourly weather data from a spatially dense automated weather station network (the Oklahoma Mesonet). Weekly AVHRR satellite imagery is also utilized for live fuel moisture and fuel load calculations. The result is a near-real-time mesoscale fire danger rating system to 1-km resolution whose output is readily available on the World Wide Web (http://agweather.mesonet.ou.edu/models/fire). Examples of output from 25 February 1998 are presented.The Oklahoma Fire Danger Model, in conjunction with other fire-related operational tools, has proven useful to the wildland fire management community in Oklahoma, for both wildfire anticipation and suppression and for prescribed fire activities. Instead of once-per-day NFDRS information at two to three sites, the fire manager now has statewide fire danger information available at 1-km resolution at up to hourly intervals, enabling a quicker response to changing fire weather conditions across the entire state.


2007 ◽  
Vol 247 (1-3) ◽  
pp. 1-17 ◽  
Author(s):  
Paul F. Hessburg ◽  
Keith M. Reynolds ◽  
Robert E. Keane ◽  
Kevin M. James ◽  
R. Brion Salter

2013 ◽  
Vol 22 (1) ◽  
pp. 1 ◽  
Author(s):  
Carol Miller ◽  
Alan A. Ager

Risk analysis evolved out of the need to make decisions concerning highly stochastic events, and is well suited to analyse the timing, location and potential effects of wildfires. Over the past 10 years, the application of risk analysis to wildland fire management has seen steady growth with new risk-based analytical tools that support a wide range of fire and fuels management planning scales from individual incidents to national, strategic interagency programs. After a brief review of the three components of fire risk – likelihood, intensity and effects – this paper reviews recent advances in quantifying and integrating these individual components of fire risk. We also review recent advances in addressing temporal dynamics of fire risk and spatial optimisation of fuels management activities. Risk analysis approaches have become increasingly quantitative and sophisticated but remain quite disparate. We suggest several necessary and fruitful directions for future research and development in wildfire risk analysis.


Sign in / Sign up

Export Citation Format

Share Document