Parameter evaluation and optimization for multi-resolution segmentation in object-based shadow detection using very high resolution imagery

2016 ◽  
Vol 32 (12) ◽  
pp. 1307-1332 ◽  
Author(s):  
Hui Luo ◽  
Deren Li ◽  
Chong Liu
2019 ◽  
Vol 9 (2) ◽  
pp. 125-140
Author(s):  
Shridhar Digambar Jawak ◽  
Sagar Filipe Wankhede ◽  
Alvarinho Joaozinho Luis ◽  
Prashant Hemendra Pandit ◽  
Shubhang Kumar

Surface glacier facies are superficial expressions of a glacier that are distinguishable based on differing spectral and structural characteristics according to their age and inter-mixed impurities. Increasing bodies of literature suggest that the varying properties of surface glacier facies differentially influence the melt of the glacier, thus affecting the mass balance. Incorporating these variations into distributed mass balance modelling can improve the perceived accuracy of these models. However, detecting and subsequently mapping these facies with a high degree of accuracy is a necessary precursor to such complex modelling. The variations in the reflectance spectra of various glacier facies permit multiband imagery to exploit band ratios for their effective extraction. However, coarse and medium spatial resolution multispectral imagery can delimit the efficacy of band ratioing by muddling the minor spatial and spectral variations of a glacier. Very high-resolution imagery, on the other hand, creates distortions in the conventionally obtained information extracted through pixel-based classification. Therefore, robust and adaptable methods coupled with higher resolution data products are necessary to effectively map glacier facies. This study endeavours to identify and isolate glacier facies on two unnamed glaciers in the Chandra-Bhaga basin, Himalayas, using an established object-based multi-index protocol. Exploiting the very high resolution offered by WorldView-2 and its eight spectral bands, this study implements customized spectral index ratios via an object-based environment. Pixel-based supervised classification is also performed using three popular classifiers to comparatively gauge the classification accuracies. The object-based multi-index protocol delivered the highest overall accuracy of 86.67%. The Minimum Distance classifier yielded the lowest overall accuracy of 62.50%, whereas, the Mahalanobis Distance and Maximum Likelihood classifiers yielded overall accuracies of 77.50% and 70.84% respectively. The results outline the superiority of the object-based method for extraction of glacier facies. Forthcoming studies must refine the indices and test their applicability in wide ranging scenarios.


2021 ◽  
Vol 13 (13) ◽  
pp. 2508
Author(s):  
Loredana Oreti ◽  
Diego Giuliarelli ◽  
Antonio Tomao ◽  
Anna Barbati

The importance of mixed forests is increasingly recognized on a scientific level, due to their greater productivity and efficiency in resource use, compared to pure stands. However, a reliable quantification of the actual spatial extent of mixed stands on a fine spatial scale is still lacking. Indeed, classification and mapping of mixed populations, especially with semi-automatic procedures, has been a challenging issue up to date. The main objective of this study is to evaluate the potential of Object-Based Image Analysis (OBIA) and Very-High-Resolution imagery (VHR) to detect and map mixed forests of broadleaves and coniferous trees with a Minimum Mapping Unit (MMU) of 500 m2. This study evaluates segmentation-based classification paired with non-parametric method K- nearest-neighbors (K-NN), trained with a dataset independent from the validation one. The forest area mapped as mixed forest canopies in the study area amounts to 11%, with an overall accuracy being equal to 85% and K of 0.78. Better levels of user and producer accuracies (85–93%) are reached in conifer and broadleaved dominated stands. The study findings demonstrate that the very high resolution images (0.20 m of spatial resolutions) can be reliably used to detect the fine-grained pattern of rare mixed forests, thus supporting the monitoring and management of forest resources also on fine spatial scales.


2018 ◽  
Vol 10 (11) ◽  
pp. 1768 ◽  
Author(s):  
Hui Yang ◽  
Penghai Wu ◽  
Xuedong Yao ◽  
Yanlan Wu ◽  
Biao Wang ◽  
...  

Building extraction from very high resolution (VHR) imagery plays an important role in urban planning, disaster management, navigation, updating geographic databases, and several other geospatial applications. Compared with the traditional building extraction approaches, deep learning networks have recently shown outstanding performance in this task by using both high-level and low-level feature maps. However, it is difficult to utilize different level features rationally with the present deep learning networks. To tackle this problem, a novel network based on DenseNets and the attention mechanism was proposed, called the dense-attention network (DAN). The DAN contains an encoder part and a decoder part which are separately composed of lightweight DenseNets and a spatial attention fusion module. The proposed encoder–decoder architecture can strengthen feature propagation and effectively bring higher-level feature information to suppress the low-level feature and noises. Experimental results based on public international society for photogrammetry and remote sensing (ISPRS) datasets with only red–green–blue (RGB) images demonstrated that the proposed DAN achieved a higher score (96.16% overall accuracy (OA), 92.56% F1 score, 90.56% mean intersection over union (MIOU), less training and response time and higher-quality value) when compared with other deep learning methods.


Sign in / Sign up

Export Citation Format

Share Document