Laboratory investigation of moisture susceptibility of long-term saturated warm mix asphalt mixtures

2012 ◽  
Vol 13 (5) ◽  
pp. 401-414 ◽  
Author(s):  
Feipeng Xiao ◽  
Wenbin Zhao ◽  
Tejash Gandhi ◽  
Serji N. Amirkhanian
2012 ◽  
Vol 598 ◽  
pp. 438-443
Author(s):  
Jing Hui Liu

The advantages of using asphalt rubber pavement strategies have been validated by many research efforts. However, the most obvious disadvantage of asphalt rubber hot mix is requiring a higher mix and placement temperature in order to obtain adequate workability, which results in higher energy requirements and asphalt easy ageing. By utilizing Warm Mix Asphalt(WMA) technology the temperature requirements of the asphalt rubber hot mix can be reduced significantly. Warm mix asphalt (WMA) is the name given to certain technologies that reduce the production and placement temperatures of asphalt mixes. Asphalt Rubber Hot Mix of containing Warm Mix technology is a very promising technology whether in energy saving or improving pavement performance. One of the main concentrations of crumb rubber mix is now on the moisture damage evaluation due to WMA additives. In this study, the objective was to conduct a laboratory investigation of moisture damage in Warm Rubber Mix Asphalt(WRMA). Currently, there are no standards or laboratory test data to support the knowledge area on the susceptibility of asphalt rubber mixtures to moisture damage. The widely accepted testing procedures i.e. indirect tensile strength (ITS) and tensile strength ratio (TSR) were performed to determine the moisture susceptibility of the mixtures.


2017 ◽  
Vol 3 (10) ◽  
pp. 987 ◽  
Author(s):  
Hamed Omrani ◽  
Ali Reza Ghanizadeh ◽  
Amin Tanakizadeh

The primary objective of this study is exploring the moisture susceptibility of unmodified and SBS-modified hot and warm mix asphalt mixtures. To this end, two different WMA additives including Aspha-min and Sasobit were employed to fabricate WMA specimens. The moisture susceptibility of warm polymer modified asphalt (WPMA) mixes was evaluated using modified Lottman test at 25°C according to AASHTO standard (T 283). In addition, the effect of different percentages of hydrated lime (from 0% to 2%) and Zycosoil (from 0% to 0.1%) as anti-stripping additives on the moisture susceptibility of the mixtures was explored. Based on the ITS test results, WPMA prepared with Sasobit additive and polymer modified asphalt (PMA) mixes satisfied the desirable tensile strength ratio (TSR) (above 80%) but Aspha-min WPMA mixes had TSR lower than 80%.


2011 ◽  
Vol 8 (9) ◽  
pp. 103661 ◽  
Author(s):  
Punith V. Shivaprasad ◽  
Feipeng Xiao ◽  
Serji N. Amirkhanian ◽  
T. Edil ◽  
S. W. Dean

Sign in / Sign up

Export Citation Format

Share Document