scholarly journals Effect of SBS Polymer and Anti-stripping Agents on the Moisture Susceptibility of Hot and Warm Mix Asphalt Mixtures

2017 ◽  
Vol 3 (10) ◽  
pp. 987 ◽  
Author(s):  
Hamed Omrani ◽  
Ali Reza Ghanizadeh ◽  
Amin Tanakizadeh

The primary objective of this study is exploring the moisture susceptibility of unmodified and SBS-modified hot and warm mix asphalt mixtures. To this end, two different WMA additives including Aspha-min and Sasobit were employed to fabricate WMA specimens. The moisture susceptibility of warm polymer modified asphalt (WPMA) mixes was evaluated using modified Lottman test at 25°C according to AASHTO standard (T 283). In addition, the effect of different percentages of hydrated lime (from 0% to 2%) and Zycosoil (from 0% to 0.1%) as anti-stripping additives on the moisture susceptibility of the mixtures was explored. Based on the ITS test results, WPMA prepared with Sasobit additive and polymer modified asphalt (PMA) mixes satisfied the desirable tensile strength ratio (TSR) (above 80%) but Aspha-min WPMA mixes had TSR lower than 80%.

2012 ◽  
Vol 174-177 ◽  
pp. 82-90 ◽  
Author(s):  
Ju Nan Shen ◽  
Zhao Xing Xie ◽  
Fei Peng Xiao ◽  
Wen Zhong Fan

The objective of this study was to evaluate the effect of nano-sized hydrated lime on the moisture susceptibility of the hot mix asphalt (HMA) mixtures in terms of three methodologies to introduce into the mixtures. The experimental design for this study included the utilizations of one binder source (PG 64-22), three aggregate sources and three different methods introducing the lime. A total of 12 types of HMA mixtures and 72 specimens were fabricated and tested in this study. The performed properties include indirect tensile strength (ITS), tensile strength ratio (TSR), flow, and toughness. The results indicated that the nano-sized lime exhibits better moisture resistance. Introducing process of the nano-sized lime will produce difference in moisture susceptibility.


2019 ◽  
Vol 25 (3) ◽  
pp. 89-101
Author(s):  
Mohammed Qadir Ismael ◽  
Ahmed Hussein Ahmed

Moisture induced damage can cause a progressive deterioration in the performance of asphalt pavement by the loss of adhesion between asphalt binder and aggregate surface and/or loss of cohesion within the binder in the presence of water. The objective of this paper is to improve the asphalt mixtures resistance to moisture by using hydrated lime as an anti-stripping additive. For this purpose, two types of asphalt binder were utilized; asphalt grades (40-50) and (60-70) with one type of aggregate of 19.0 mm aggregate nominal maximum size, and limestone dust as a mineral filler. Marshall method was adopted to find the optimum asphalt content. Essentially, two parameters were determined to evaluate the moisture susceptibility, namely: The Index of Retained Strength and the Tensile Strength Ratio. The hydrated lime was added by 1.0, 1.5, and 2.0 percentages (by weight of aggregate) using the saturated surface dry method. It was concluded that using hydrated lime will improve the moisture damage resistance. This was adopted as the value of tensile strength ratio increased by 24.50 % and 29.16% for AC (40-50) and AC (60-70) respectively, furthermore, the index of retained strength also increased by 14.28 % and 17.50 % for both asphalt grades. The optimum hydrated lime content founded to be 1.5 %.  


Author(s):  
N. Khosla ◽  
Brian G. Birdsall ◽  
Sachiyo Kawaguchi

Evaluation of a mixture’s moisture sensitivity is currently the final step in the Superpave® volumetric process. This step is accomplished by using AASHTO T-283, which tolerates a range of values in the test variables of sample air voids and degree of saturation. The tensile strength ratios determined for the mixes in this study varied with the air void level and degree of saturation. Although the levels of conditioning were within the specifications for AASHTO T-283, test results both passed and failed the 80 percent criterion, depending on the severity of conditioning. An alternative to measuring indirect tensile strength is a test that evaluates a mixture’s fundamental material properties. A relatively simple test is proposed that measures the cohesion and friction angle for asphalt mixtures. In addition, the Superpave shear tester (SST) was incorporated as a tool in evaluating moisture sensitivity. The proposed axial test determined the cohesion and angle of friction of the mix. The friction angle remained constant for the conditioned and unconditioned samples. Hence, conditioning of the samples had practically no effect on the mixture’s internal friction. The cohesion of the mix decreased when the mix was subjected to conditioning. The reduction in cohesion was greater in the case of the Fountain aggregate, which is known to be highly moisture susceptible. The shear tests to failure performed on the SST confirmed the results of the new apparatus, which provides a simple method for determining a mixture’s cohesion. The loss of cohesion due to conditioning can be used to determine a mixture’s moisture susceptibility. The three antistrip additives used in this study were hydrated lime, a liquid amine, and a liquid phosphate ester.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Yuefeng Zhu ◽  
Yanwei Li ◽  
Chundi Si ◽  
Xiaote Shi ◽  
Yaning Qiao ◽  
...  

In recent years, the significant demand for sustainable paving materials has led to a rapid increase in the utilization of reclaimed asphalt pavement (RAP) materials. When RAP is mixed with virgin asphalt concrete, particularly when its percentage is high, performance of the binder and asphalt concrete can be adversely affected. For this reason, different types of additives need to be identified and evaluated beforehand to mitigate the adverse effects. In this study, different types of fiber materials were identified and selected as binder/mixture additives, including lignin fiber (LF), polyester fiber (PF), and basalt fiber (BF). Various samples of fiber-modified binders and asphalt mixtures with different RAP contents (0%, 20%, and 40%) were prepared and were evaluated using two sets of laboratory testing: (i) dynamic shear rheometer (DSR) and bending beam rheometer (BBR) tests were performed to study the rheological properties of fiber-modified binders; (ii) the wheel tracking test, bending creep test, moisture susceptibility test, fatigue test, and self-healing fatigue test were conducted to characterize the laboratory properties of fiber-modified RAP mixtures. Test results for the modified binders show that the BF-modified binder has the greatest positive effect on the high-temperature performance of the asphalt binder, followed by PF- and LF-modified binders. However, the virgin asphalt shows the best low-temperature property than the fiber-modified asphalt binder. Test results for the whole RAP mixtures show that all fibers have a significant effect on the properties (including high- and low-temperature stability, moisture susceptibility, fatigue, and self-healing ability) of RAP mixtures. Among them, adding BF shows the greatest improvement in high-temperature stability, fatigue resistance, and self-healing ability of RAP mixtures. LF is found to significantly enhance low-temperature properties, and PF can greatly improve the resistance to moisture damage of RAP mixtures. For high percentage of RAP using on sites, adding multiple additives may further enhance its durability.


2014 ◽  
Vol 72 ◽  
pp. 139-147 ◽  
Author(s):  
Nur Izzi Md. Yusoff ◽  
Aeyman Abozed Saleh Breem ◽  
Hani N.M. Alattug ◽  
Asmah Hamim ◽  
Juraidah Ahmad

2021 ◽  
Vol 7 (6) ◽  
pp. 988-997
Author(s):  
Sura Fawzi Mohammed ◽  
Mohammed Qadir Ismael

Warm Mix Asphalt (WMA) is a modern energy-saving process that uses environmentally friendly materials, has lower mixing and compaction temperatures, and uses less energy and releases less contaminants than conventional hot mix asphalt. Moisture damage poses one of the main challenges of the material design in asphalt pavements. During its design life, the asphalt pavement is exposed to the effect of moisture from the surrounding environment. This research intends to investigate the role of the polypropylene fibres for modifying the moisture susceptibility for the WMA by using different percentages of polypropylene (namely 2, 4, and 6%) by weight of the binder of the control mixture (WMA). In this paper, the physical characteristics of the asphalt cement, Marshall properties, Tensile Strength Ratio (TSR) and Index of Retained Strength (IRS) were determined to establish the effect of the polypropylene on the moisture susceptibility of the WMA. The results displayed that the modification of the AC with polypropylene caused an increase in the optimum asphalt content by 1.03, 3.09, and 11.3%, with the addition of 2, 4 and 6% of the P.P., respectively. The moisture resistance of the asphalt mixture was enhanced by adding the P.P., according to the rise in the Tensile Strength Ratio (TSR) and Index of Retained Strength (IRS) values. The TSR value showed 9.4, 18.2 and 19.5% increase when the P.P. increased from 0.00 to 0.02, 0.04, and 0.06, respectively; besides, the IRS showed improvement with the addition of the P.P. to the WMA. Doi: 10.28991/cej-2021-03091704 Full Text: PDF


2019 ◽  
Vol 1 (1) ◽  
Author(s):  
Mohd Rosli Mohd Hasan ◽  
Zhanping You ◽  
Mohd Khairul Idham Mohd Satar ◽  
Muhammad Naqiuddin Mohd Warid ◽  
Nurul Hidayah Mohd Kamaruddin ◽  
...  

This study was conducted to assess the performance of modified asphalt binders and engineering properties of mixtures prepared with incorporation 3 vol% and 6 vol% of calcium carbonate (CaCO3), linear low-density polyethylene (LLDPE), and combinations of CaCO3 and LLDPE. The rheological properties of control and modified asphalt binders were evaluated using a series of testing such as rotational viscometer (RV), multiple stress creep recovery (MSCR) and bending beam rheometer (BBR) tests. Meanwhile, four-point beam fatigue test, the dynamic modulus (E*) test and tensile strength ratio (TSR) test were conducted to assess the engineering properties of asphalt mixtures. Based on the findings, the RV and MSCR test result shows that all modified asphalt binders have improved performance in comparison to the neat asphalt binders in terms of higher viscosity and improved permanent deformation resistance. A higher amount of CaCO3 and LLDPE have led modified asphalt binders to better recovery percentage, except the asphalt binders modified using a combination of CaCO3 and LLDPE. However, the inclusion of LLDPE into asphalt binder has lowered the thermal cracking resistance. The incorporation of CaCO3 in asphalt mixtures was found beneficial, especially in improving the ability to resist fatigue cracking of asphalt mixture. In contrast, asphalt mixtures show better moisture sensitivity through the addition of LLDPE. The addition of LLDPE has significantly enhanced the indirect tensile strength values and tensile strength ratio of asphalt mixtures.


Sign in / Sign up

Export Citation Format

Share Document