Dissipative particle dynamics simulations of water droplet flows in a submicron parallel-plate channel for different temperature and surface-wetting conditions

2016 ◽  
Vol 70 (6) ◽  
pp. 595-612 ◽  
Author(s):  
Toru Yamada ◽  
Erik O. Johansson ◽  
Bengt Sundén ◽  
Jinliang Yuan
Author(s):  
Erik O. Johansson ◽  
Toru Yamada ◽  
Jinliang Yuan ◽  
Bengt Sundén

Dissipative particle dynamics (DPD) have been widely used for the simulations of dynamics of both simple and complex fluids at nano/micro scales. In these simulations, periodic boundaries are usually employed in the main flow direction and the characterization of the flow and heat transfer is based on fully developed conditions. In the real nano/micro-fluidic devices, however, there are entrances and exits and the flow and temperature fields are not the same at different positions, making the periodic boundary conditions ill-suited due to problems with conservation of energy and momentum. This is the motivation of the present study to generate the non-periodic boundary condition having an entrance and an exit in the the DPD system and study the heat transfer characteristics in the entrance region. In this study, the entrance and exit regions are modelled for simulations of the flow in a parallel-plate channel based on the available methodology originally introduced for molecular dynamics. In this methodology, a body force acts on the DPD particles at the entrance region of the solution domain to generate the entrance region. This is region is so-called pump region. Also, a region to initiate the DPDe temperature was located followed by the pump region. Forced convection heat transfer of water flowing through a parallel-plate channel with constant wall temperature was simulated using this method. The simulations were implemented for different body forces in the pump region. The results were evaluated in terms of velocity, temperature and number density distributions in the channel and showed the effects of the compressibility of the DPD fluid and random movement (or Brownian motion). In addition, the Reynolds and Nusselt numbers were calculated to investigate their effects on the heat transfer characteristics at the entrance region.


2011 ◽  
Vol 50 (1) ◽  
pp. 69-77 ◽  
Author(s):  
Justin R. Spaeth ◽  
Todd Dale ◽  
Ioannis G. Kevrekidis ◽  
Athanassios Z. Panagiotopoulos

Soft Matter ◽  
2017 ◽  
Vol 13 (36) ◽  
pp. 6178-6188 ◽  
Author(s):  
Haina Tan ◽  
Chunyang Yu ◽  
Zhongyuan Lu ◽  
Yongfeng Zhou ◽  
Deyue Yan

This work discloses for the first time the self-assembly phase diagrams of amphiphilic hyperbranched multiarm copolymers in various solvents by dissipative particle dynamics simulations.


RSC Advances ◽  
2017 ◽  
Vol 7 (66) ◽  
pp. 41787-41787
Author(s):  
Yue Ma ◽  
Yuxiang Wang ◽  
Xuejian Deng ◽  
Guanggang Zhou ◽  
Shah Khalid ◽  
...  

Correction for ‘Dissipative particle dynamics and molecular dynamics simulations on mesoscale structure and proton conduction in a SPEEK/PVDF-g-PSSA membrane’ by Yue Ma et al., RSC Adv., 2017, 7, 39676–39684.


RSC Advances ◽  
2017 ◽  
Vol 7 (63) ◽  
pp. 39676-39684 ◽  
Author(s):  
Yue Ma ◽  
Yuxiang Wang ◽  
Xuejian Deng ◽  
Guanggang Zhou ◽  
Sha Khalid ◽  
...  

The blend morphologies evolve from disordered small particles to a regular PVDF cluster network, which were connected by SPEEK cylindrical channels.


Sign in / Sign up

Export Citation Format

Share Document