A numerical study of supercritical carbon dioxide as a medium for thermal energy storage applications under natural convection

Author(s):  
T. D. Luz ◽  
F. G. Battisti ◽  
A. K. da Silva
2019 ◽  
Author(s):  
Kelly Osterman ◽  
Diego Guillen ◽  
D. Yogi Goswami

Abstract This paper numerically explores a high-temperature sensible-latent hybrid thermal energy storage system designed to store heat with output temperatures stabilized at approximately 550–600 °C for direct coupling with supercritical carbon dioxide (sCO2) power cycles operating at their design point. sCO2 and dry air at 25 MPa are used as heat transfer fluid (HTF) in a packed bed storage system that combines rocks as sensible heat storage and AlSi12 as latent heat storage. The base model using dry air at atmospheric pressure is compared to similar work done at ETH Zurich; the model is then extended for use with sCO2 to compare the performance of air and sCO2 at similar volumetric flow rates. It was found that sCO2 is capable of storing a significantly larger amount of energy (∼40 kWh) in the same time period as the air system (∼19 kWh), and can discharge that energy much quicker (1.5 hours compared to 4 hours). However, in order to achieve similar degrees of temperature stabilization, the total height of PCM had to be increased significantly, from 9 cm to 45 cm or more.


Author(s):  
Jingde Zhao ◽  
Jorge L. Alvarado ◽  
Ehsan M. Languri ◽  
Chao Wang

Heat transfer analysis of a high aspect ratio thermal energy storage (TES) device was carried out numerically. The three dimensional numerical study was performed to understand the heat transfer enhancement which results from internal natural convection in a high aspect ratio vertical unit. Octadecane was used as phase change material (PCM) inside TES system, which consisted of six corrugated panels filled with PCM. Each panel had a total of 6 tall cavities filled with PCM, which were exposed to external flow in a concentric TES system. Unlike traditional concentric-type TES devices where heat transfer by conduction is the dominant heat transport mechanism, the high aspect ratio TES configuration used in the study helped promote density-gradient based internal convection mechanism. The numerical model was solved based on the finite volume method, which captured the whole transient heat transfer process effectively. The time-dependent temperature profiles of the PCM inside a single TES panel are compared with the experimental results for two cases. Numerical and experimental results of the two cases showed a reasonable agreement. Furthermore, convection cells were formed and sustained when the PCM melted within the space between the solid core and the walls. The promising results of this numerical study illustrate the importance of internal natural convection on the speed of the PCM melting (charging) process.


Sign in / Sign up

Export Citation Format

Share Document