Large Eddy Simulations (LES) on the Flow and Heat Transfer in a Wall-Bounded Pin Matrix

2014 ◽  
Vol 65 (2) ◽  
pp. 103-128 ◽  
Author(s):  
L. Paniagua ◽  
O. Lehmkuhl ◽  
C. Oliet ◽  
C. D. Pérez-Segarra
Author(s):  
Cody Dowd ◽  
Danesh Tafti

The focus of this research is to predict the flow and heat transfer in a rotating two-pass duct geometry with staggered ribs using Large-Eddy Simulations (LES). The geometry consists of a U-Bend with 17 ribs in each pass. The ribs are staggered with an e/Dh = 0.1 and P/e = 10. LES is performed at a Reynolds number of 100,000, a rotation number of 0.2 and buoyancy parameters (Bo) of 0.5 and 1.0. The effects of Coriolis forces and centrifugal buoyancy are isolated and studied individually. In all cases it is found that increasing Bo from 0.5 to 1.0 at Ro = 0.2 has little impact on heat transfer. It is found that in the first pass, the heat transfer is quite receptive to Coriolis forces which augment and attenuate heat transfer at the trailing and leading walls, respectively. Centrifugal buoyancy, on the other hand has a bigger effect in augmenting heat transfer at the trailing wall than in attenuating heat transfer at the leading wall. On contrary, it aids heat transfer in the second half of the first pass at the leading wall by energizing the flow near the wall. The heat transfer in the second pass is dominated by the highly turbulent flow exiting the bend. Coriolis forces have no impact on the augmentation of heat transfer on the leading wall till the second half of the passage whereas it attenuates heat transfer at the trailing wall as soon as the flow exits the bend. Contrary to phenomenological arguments, inclusion of centrifugal buoyancy augments heat transfer over Coriolis forces alone on both the leading and trailing walls of the second pass.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Sunil Patil ◽  
Danesh Tafti

Large eddy simulations of flow and heat transfer in a square ribbed duct with rib height to hydraulic diameter of 0.1 and 0.05 and rib pitch to rib height ratio of 10 and 20 are carried out with the near wall region being modeled with a zonal two layer model. A novel formulation is used for solving the turbulent boundary layer equation for the effective tangential velocity in a generalized co-ordinate system in the near wall zonal treatment. A methodology to model the heat transfer in the zonal near wall layer in the large eddy simulations (LES) framework is presented. This general approach is explained for both Dirichlet and Neumann wall boundary conditions. Reynolds numbers of 20,000 and 60,000 are investigated. Predictions with wall modeled LES are compared with the hydrodynamic and heat transfer experimental data of (Rau et al. 1998, “The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel,”ASME J. Turbomach., 120, pp. 368–375). and (Han et al. 1986, “Measurement of Heat Transfer and Pressure Drop in Rectangular Channels With Turbulence Promoters,” NASA Report No. 4015), and wall resolved LES data of Tafti (Tafti, 2004, “Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades,” Int. J. Heat Fluid Flow 26, pp. 92–104). Friction factor, heat transfer coefficient, mean flow as well as turbulent statistics match available data closely with very good accuracy. Wall modeled LES at high Reynolds numbers as presented in this paper reduces the overall computational complexity by factors of 60–140 compared to resolved LES, without any significant loss in accuracy.


Author(s):  
Moussa Moindze Ali ◽  
Nadia Martaj ◽  
Mustapha Mahdaoui ◽  
S. Savarese ◽  
Rachid Bennacer ◽  
...  

2004 ◽  
Vol 127 (2) ◽  
pp. 306-320 ◽  
Author(s):  
A. K. Saha ◽  
Sumanta Acharya

Large eddy simulations (LES) and unsteady Reynolds averaged Navier-Stokes (URANS) simulations have been performed for flow and heat transfer in a rotating ribbed duct. The ribs are oriented normal to the flow and arranged in a staggered configuration on the leading and trailing surfaces. The LES results are based on a higher-order accurate finite difference scheme with a dynamic Smagorinsky model for the subgrid stresses. The URANS procedure utilizes a two equation k-ε model for the turbulent stresses. Both Coriolis and centrifugal buoyancy effects are included in the simulations. The URANS computations have been carried out for a wide range of Reynolds number (Re=12,500-100,000), rotation number (Ro=0-0.5) and density ratio (Δρ∕ρ=0-0.5), while LES results are reported for a single Reynolds number of 12,500 without and with rotation (Ro=0.12,Δρ∕ρ=0.13). Comparison is made between the LES and URANS results, and the effects of various parameters on the flow field and surface heat transfer are explored. The LES results clearly reflect the importance of coherent structures in the flow, and the unsteady dynamics associated with these structures. The heat transfer results from both LES and URANS are found to be in reasonable agreement with measurements. LES is found to give higher heat transfer predictions (5–10% higher) than URANS. The Nusselt number ratio (Nu∕Nu0) is found to decrease with increasing Reynolds number on all walls, while they increase with the density ratio along the leading and trailing walls. The Nusselt number ratio on the trailing and sidewalls also increases with rotation. However, the leading wall Nusselt number ratio shows an initial decrease with rotation (till Ro=0.12) due to the stabilizing effect of rotation on the leading wall. However, beyond Ro=0.12, the Nusselt number ratio increases with rotation due to the importance of centrifugal-buoyancy at high rotation.


Author(s):  
Kazunori Watanabe ◽  
Toshihiko Takahashi

Ribbed channel flow is adopted for internal cooling of a 1300 °C class gas turbine first stage rotor blade. Heat transfer characteristics of transverse ribbed channel flow were examined using LES (Large Eddy Simulations) and by experiments. The flow was examined over the range of Reynolds number around 105 that are closer to the actual engine conditions. Computational results agreed reasonably well with experimental results. Heat transfer enhancement mechanism in a ribbed channel flow was shown to be caused by advecting eddy structure and interference of a rib.


Sign in / Sign up

Export Citation Format

Share Document