Author(s):  
Cody Dowd ◽  
Danesh Tafti

The focus of this research is to predict the flow and heat transfer in a rotating two-pass duct geometry with staggered ribs using Large-Eddy Simulations (LES). The geometry consists of a U-Bend with 17 ribs in each pass. The ribs are staggered with an e/Dh = 0.1 and P/e = 10. LES is performed at a Reynolds number of 100,000, a rotation number of 0.2 and buoyancy parameters (Bo) of 0.5 and 1.0. The effects of Coriolis forces and centrifugal buoyancy are isolated and studied individually. In all cases it is found that increasing Bo from 0.5 to 1.0 at Ro = 0.2 has little impact on heat transfer. It is found that in the first pass, the heat transfer is quite receptive to Coriolis forces which augment and attenuate heat transfer at the trailing and leading walls, respectively. Centrifugal buoyancy, on the other hand has a bigger effect in augmenting heat transfer at the trailing wall than in attenuating heat transfer at the leading wall. On contrary, it aids heat transfer in the second half of the first pass at the leading wall by energizing the flow near the wall. The heat transfer in the second pass is dominated by the highly turbulent flow exiting the bend. Coriolis forces have no impact on the augmentation of heat transfer on the leading wall till the second half of the passage whereas it attenuates heat transfer at the trailing wall as soon as the flow exits the bend. Contrary to phenomenological arguments, inclusion of centrifugal buoyancy augments heat transfer over Coriolis forces alone on both the leading and trailing walls of the second pass.


2007 ◽  
Vol 130 (1) ◽  
Author(s):  
Evan A. Sewall ◽  
Danesh K. Tafti

The problem of accurately predicting the flow and heat transfer in the ribbed internal cooling duct of a rotating gas turbine blade is addressed with the use of large eddy simulations (LES). Four calculations of the developing flow region of a rotating duct with ribs on opposite walls are used to study changes in the buoyancy parameter at a constant rotation rate. The Reynolds number is 20,000, the rotation number is 0.3, and the buoyancy parameter is varied between 0.00, 0.25, 0.45, and 0.65. Previous experimental studies have noted that leading wall heat transfer augmentation decreases as the buoyancy parameter increases with low buoyancy, but heat transfer then increases with high buoyancy. However, no consistent physical explanation has been given in the literature. The LES results from this study show that the initial decrease in augmentation with buoyancy is a result of larger separated regions at the leading wall. However, as the separated region spans the full pitch between ribs with an increase in buoyancy parameter, it leads to increased turbulence and increased entrainment of mainstream fluid, which is redirected toward the leading wall by the presence of a rib. The impinging mainstream fluid results in heat transfer augmentation in the region immediately upstream of a rib. The results obtained from this study are in very good agreement with previous experimental results.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Sunil Patil ◽  
Danesh Tafti

Large eddy simulations of flow and heat transfer in a square ribbed duct with rib height to hydraulic diameter of 0.1 and 0.05 and rib pitch to rib height ratio of 10 and 20 are carried out with the near wall region being modeled with a zonal two layer model. A novel formulation is used for solving the turbulent boundary layer equation for the effective tangential velocity in a generalized co-ordinate system in the near wall zonal treatment. A methodology to model the heat transfer in the zonal near wall layer in the large eddy simulations (LES) framework is presented. This general approach is explained for both Dirichlet and Neumann wall boundary conditions. Reynolds numbers of 20,000 and 60,000 are investigated. Predictions with wall modeled LES are compared with the hydrodynamic and heat transfer experimental data of (Rau et al. 1998, “The Effect of Periodic Ribs on the Local Aerodynamic and Heat Transfer Performance of a Straight Cooling Channel,”ASME J. Turbomach., 120, pp. 368–375). and (Han et al. 1986, “Measurement of Heat Transfer and Pressure Drop in Rectangular Channels With Turbulence Promoters,” NASA Report No. 4015), and wall resolved LES data of Tafti (Tafti, 2004, “Evaluating the Role of Subgrid Stress Modeling in a Ribbed Duct for the Internal Cooling of Turbine Blades,” Int. J. Heat Fluid Flow 26, pp. 92–104). Friction factor, heat transfer coefficient, mean flow as well as turbulent statistics match available data closely with very good accuracy. Wall modeled LES at high Reynolds numbers as presented in this paper reduces the overall computational complexity by factors of 60–140 compared to resolved LES, without any significant loss in accuracy.


2014 ◽  
Vol 65 (2) ◽  
pp. 103-128 ◽  
Author(s):  
L. Paniagua ◽  
O. Lehmkuhl ◽  
C. Oliet ◽  
C. D. Pérez-Segarra

Author(s):  
Evan A. Sewall ◽  
Danesh K. Tafti

The problem of accurately predicting the flow and heat transfer in the ribbed internal cooling duct of a rotating gas turbine blade is addressed with the use of large eddy simulations (LES). Four calculations of the developing flow region of a rotating duct with ribs on opposite walls are used to study changes in the buoyancy parameter at a constant rotation rate. The Reynolds number is 20,000, the rotation number is 0.3, and the buoyancy parameter is varied between 0.00, 0.25, 0.45, and 0.65. Previous experimental studies have noted that leading wall heat transfer augmentation decreases as the buoyancy parameter increases with low buoyancy, but heat transfer then increases with high buoyancy. However, no consistent physical explanation has been given in the literature. The LES results from this study show that the initial decrease in augmentation with buoyancy is a result of larger separated regions at the leading wall. However, as the separated region spans the full pitch between ribs with an increase in buoyancy parameter, it leads to increased turbulence and increased entrainment of mainstream fluid which is redirected toward the leading wall by the presence of a rib. The impinging mainstream fluid results in heat transfer augmentation in the region immediately upstream of a rib. The results obtained from this study are in very good agreement with previous experimental results.


Author(s):  
Moussa Moindze Ali ◽  
Nadia Martaj ◽  
Mustapha Mahdaoui ◽  
S. Savarese ◽  
Rachid Bennacer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document