A Fuzzy Model for Predicting Surface Roughness in Plasma Arc Cutting of AISI 4140 Steel

2012 ◽  
Vol 27 (1) ◽  
pp. 95-102 ◽  
Author(s):  
Cebeli Özek ◽  
Ulaş Çaydaş ◽  
Engin Ünal
2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Ekhaesomi A Agbonoga ◽  
Oyewole Adedipe ◽  
Uzoma G Okoro ◽  
Fidelis J Usman ◽  
Kafayat T Obanimomo ◽  
...  

This study investigated the effects of process parameters of plasma arc cutting (PAC) of low carbon steel material using analysis of variance. Three process parameters, cutting speed, cutting current and gas pressure were considered and experiments were conducted based on response surface methodology (RSM) via the box-Behnken approach. Process responses viz. surface roughness (Ra) and kerf width of cut surface were measured for each experimental run. Analysis of Variance (ANOVA) was performed to get the contribution of process parameters on responses. Cutting current has the most significant effect of 33.43% on the surface roughness and gas pressure has the most significant effect on  kerf width of  41.99% . For minimum surface roughness and minimum kerf width, process parameters were optimized using the RSM. Keywords: Cutting speed, cutting current, gas pressure,   surface roughness, kerf width


Author(s):  
Nehal Dash ◽  
Apurba Kumar Roy ◽  
Sanghamitra Debta ◽  
Kaushik Kumar

Plasma Arc Cutting (PAC) process is a widely used machining process in several fabrication, construction and repair work applications. Considering gas pressure, arc current and torch height as the inputs and among all possible outputs, in the present work Material Removal Rate and Surface Roughness would be considered as factors that determines the quality, machining time and machining cost. In order to reduce the number of experiments Design of Experiments (DOE) would be carried out. In later stages applications of Genetic Algorithm (GA) and Fuzzy Logic would be used for Optimization of process parameters in Plasma Arc Cutting (PAC). The output obtained would be minimized and maximized for Surface Roughness and Material Removal Rate respectively using Genetic Algorithm (GA) and Fuzzy Logic.


2012 ◽  
Vol 576 ◽  
pp. 3-6 ◽  
Author(s):  
R. Bhuvenesh ◽  
M.S. Abdul Manan ◽  
M.H. Norizaman

Manufacturing companies define the qualities of thermal removing process based on the dimension and physical appearance of the cutting material surface. Therefore, the roughness of the surface area of the cutting material and the rate of the material being removed during the manual plasma arc cutting process was importantly considered. Plasma arc cutter Selco Genesis 90 was used to cut the specimens made from Standard AISI 1017 Steel manually based on the selected parameters setting. Two different thicknesses of specimens with 3mm and 6mm were used. The material removal rate (MRR) was measured by determining the weight of the specimens before and after the cutting process. The surface roughness (SR) analysis was conducted to determine the average roughness (Ra) value. Taguchi method was utilized as an experimental layout to obtain MRR and Ra values. The results reveal that for the case of manual plasma arc cutting machining, the SR values are inversely proportional to the MRR values. The quality of the surface roughness depends on the dross peak that occurred during the cutting process.


Measurement ◽  
2013 ◽  
Vol 46 (9) ◽  
pp. 3041-3056 ◽  
Author(s):  
Mohamed Elbah ◽  
Mohamed Athmane Yallese ◽  
Hamdi Aouici ◽  
Tarek Mabrouki ◽  
Jean-François Rigal

Sign in / Sign up

Export Citation Format

Share Document