scholarly journals Feed rate affecting surface roughness and tool wear in dry hard turning of AISI 4140 steel automotive parts using TiN+AlCrN coated inserts

Author(s):  
Phacharadit Paengchit ◽  
Charnnarong Saikaew
Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6106
Author(s):  
Waleed Ahmed ◽  
Hussien Hegab ◽  
Atef Mohany ◽  
Hossam Kishawy

It is necessary to improve the machinability of difficult-to-cut materials such as hardened steel, nickel-based alloys, and titanium alloys as these materials offer superior properties such as chemical stability, corrosion resistance, and high strength to weight ratio, making them indispensable for many applications. Machining with self-propelled rotary tools (SPRT) is considered one of the promising techniques used to provide proper tool life even under dry conditions. In this work, an attempt has been performed to analyze, model, and optimize the machining process of AISI 4140 hardened steel using self-propelled rotary tools. Experimental analysis has been offered to (a) compare the fixed and rotary tools performance and (b) study the effect of the inclination angle on the surface quality and tool wear. Moreover, the current study implemented some artificial intelligence-based approaches (i.e., genetic programming and NSGA-II) to model and optimize the machining process of AISI 4140 hardened steel with self-propelled rotary tools. The feed rate, cutting velocity, and inclination angle were the selected design variables, while the tool wear, surface roughness, and material removal rate (MRR) were the studied outputs. The optimal surface roughness was obtained at a cutting speed of 240 m/min, an inclination angle of 20°, and a feed rate of 0.1 mm/rev. In addition, the minimum flank tool wear was observed at a cutting speed of 70 m/min, an inclination angle of 10°, and a feed rate of 0.15 mm/rev. Moreover, different weights have been assigned for the three studied outputs to offer different optimized solutions based on the designer’s interest (equal-weighted, finishing, and productivity scenarios). It should be stated that the findings of the current work offer valuable recommendations to select the optimized cutting conditions when machining hardened steel AISI 4140 within the selected ranges.


2018 ◽  
Vol 779 ◽  
pp. 153-158
Author(s):  
Phacharadit Paengchit ◽  
Charnnarong Saikaew

This work investigated the influences of cutting speed and feed rate on surface roughness in hard turning of AISI 4140 chromium molybdenum steel bar using mixed ceramic inserts Al2O3+TiC under dry condition for automotive industry applications. Turning experiments were conducted by varying cutting speed ranging from 150 to 220 m/min and feed rate ranging from 0.06 to 1 mm/rev. General factorial design was used to analyze the data set of surface roughness and determine statistically significant process factors based on analysis of variance results. The results showed that average surface roughness was significantly affected by feed rate and interaction between cutting speed and feed rate at the level of significance of 0.05. An optimal operating condition for hard turning of AISI 4140 with the ceramic cutting tool that produced a minimum machined surface roughness was obtained at cutting speed of 220 m/min and 0.06 mm/rev.


Measurement ◽  
2013 ◽  
Vol 46 (9) ◽  
pp. 3041-3056 ◽  
Author(s):  
Mohamed Elbah ◽  
Mohamed Athmane Yallese ◽  
Hamdi Aouici ◽  
Tarek Mabrouki ◽  
Jean-François Rigal

2018 ◽  
Vol 12 (1) ◽  
pp. 175-191 ◽  
Author(s):  
S. Yousefi ◽  
M. Zohoor

Objective: Hard turning in dry condition using cubic boron nitride tools, as an alternative of traditional grinding operation, is an advanced machining operation in which hardened steel with the hardness greater than 46 HRc is machined without the use of any coolant. Method: In the hard turning process, due to its hard nature, usually the cutting depth is selected lower than or equal to the nose radius, and the cutting zone is mainly limited within the tool nose area. Thus, unlike the traditional turning, the effect of the nose radius on the surface finish and dimensional accuracy becomes more complicated. Therefore, in this paper, firstly, the effect of processing parameters such as nose radius on the surface roughness and dimensional accuracy is investigated. Then, the relationship between the surface finish and dimensional accuracy variations with vibration, cutting forces, and tool wear is studied experimentally. The results revealed that feed rate is the most important factor influencing the surface roughness, whereas spindle speed and cutting depth are insignificant factors. On the other hand, cutting depth and spindle speed have the greatest effect on the dimensional accuracy, while nose radius has no significant effect. The vibration and wear analysis revealed that compared with the vibration, the tool wear has no considerable effect on the dimensional accuracy. It was also observed that the spindle speed has a contradictory effect on the surface roughness and dimensional accuracy. The best dimensional accuracy is obtained at 500 rpm, while the best surface quality is achieved at 2000 rpm. Result: The obtained results also showed that increasing the feed rate from a particular value not only leads to no significant changes in the surface roughness value but in some cases can also decrease the surface roughness. Conclusion: According to the analysis results, the lowest cutting depth, the moderate feed rate, and the speed lower than 1100 rpm provide the best dimensional accuracy. Compared with carbides and ceramics, cubic boron nitride tools produce a better surface roughness at both higher cutting depth and speed. 0.202 µm is the best surface roughness that was obtained at rε = 1.2 mm, N = 2000 rpm, f = 0.08 mm/rev, d = 0.5 mm which is comparable with the surface quality obtained by the conventional grinding operation.


2018 ◽  
Vol 12 (1) ◽  
pp. 5-10 ◽  
Author(s):  
Gokhan Basar ◽  
Funda Kahraman

In this study, the effect of cutting parameters such as the depth of cut, feed rate, cutting speed and the number of inserts on surface roughness were investigated in the milling of the AISI 4140 steel. The optimal control factors for surface quality were detected by using the Taguchi technique. Experimental trials were designed according to the Taguchi L18 (21x33) orthogonal array. The statistical effects of control factors on surface roughness have been established by using the analysis of variance (ANOVA). Optimal cutting parameters were obtained by using the S/N ratio values. The ANOVA results showed that the effective factors were the number of inserts and the feed rate on surface roughness. However, the depth of cut and the cutting speed showed an insignificant effect. Additionally, the First-order and Second-order regression analysis were conducted to estimate the performance characteristics of the experiment. The acquired regression equation results matched with the surface roughness measurement results. The optimal performance characteristics were obtained as a 0.5 mm depth of cut, 0.08 mm/rev feed rate, 325 m/min cutting speed and 1 number of inserts by using the Taguchi method. Additionally, the confirmation test results indicated that the Taguchi method was very prosperous in the optimization of the machining parameters to obtain the minimum surface roughness in the milling of the AISI 4140 steel.


2013 ◽  
Vol 315 ◽  
pp. 241-245 ◽  
Author(s):  
Ali Davoudinejad ◽  
M.Y. Noordin ◽  
Danial Ghodsiyeh ◽  
Sina Alizadeh Ashrafi ◽  
Mohsen Marani Barzani

Hard turning is a dominant machining operation performed on hardened materials using single-point cutting tools. In recent years, hard turning operation has become more and more capable with respect to various machinability criteria. This work deals with machinability of hardened DF-3 tool steel with 55 ±1 HRC hardness at various cutting conditions in terms of tool life, tool wear mechanism and surface roughness. Continuous dry turning tests were carried out using coated, mixed ceramic insert with honed edge geometry. Two different cutting speeds, 100 and 210 m/min, and feed rate values of 0.05, 0.125 and 0.2 mm/rev were used with a 0.2 mm constant depth of cut for all tests. Additionally scanning electron microscope (SEM) was employed to clarify the different types of wear. As far as tool life was concerned, best result was achieved at lowest cutting condition whereas surface roughness values decreased when operating at higher cutting speed and lower feed rate. Additionally maximum volume of material removed is obtained at low cutting speed and high feed rate. Dominant wear mechanism observed during the experiments were flank and crater wear which is mainly caused by abrasive action of the hard workpiece material with the ceramic cutting tools.


2020 ◽  
Author(s):  
Ömer ŞAHİN ◽  
Erdinç KALUÇ

Abstract In this study, effects of feed rate and cutting speed on surface roughness and cutting tool wear were investigated in drilling of AISI 4140 tempered steel workpieces with internally cooled, Ø14 mm diameter solid carbide drills on a CNC lathe. Although there are various literature on this subject, since there is no information on the experimental parameters that the study has been done, the contribution and originality of the study to the literature is to be qualitative.The experimental study was conducted using cooling water and with cutting speeds of 50, 60, 70, and 80 m/min and feed rate parameters of 0.10, 0.15, 0.20, and 0.25 mm/rev. At the end of the experiment, wear of the used drills was monitored with a material microscope and wear values were determined. Surface roughness of the holes was measured with Mitutoyo branded surface roughness measurement instrument. The longest drill life was obtained at 50 m/min cutting speed and 0.10 mm/rev feed rate. Surface roughness of the samples with drilled holes was measured, and these values were found to vary in the range of 0.270–2.480 µm. At 0.10 mm/rev feed rate and 50 m/min cutting speed, the lowest cutting tool wear was measured as 1222393.74 µm2, while the highest wear was measured as 4532811.14 µm2. For the best surface quality and lowest cutting tool wear, 50 m/min cutting speed and 0.10 mm/rev feed rate were determined to be the optimum parameters.


Sign in / Sign up

Export Citation Format

Share Document