aisi 4140 steel
Recently Published Documents


TOTAL DOCUMENTS

261
(FIVE YEARS 69)

H-INDEX

32
(FIVE YEARS 4)

2022 ◽  
Vol 167 ◽  
pp. 107395
Author(s):  
Qipeng Huang ◽  
Xiaoliang Shi ◽  
Yawen Xue ◽  
Kaipeng Zhang ◽  
Yangyang Gao ◽  
...  

2022 ◽  
Vol 73 ◽  
pp. 686-694
Author(s):  
Augusto M. Martins ◽  
Carlos A.A. Leal ◽  
Augusto F.V. Campidelli ◽  
Alexandre M. Abrão ◽  
Paulo C.M. Rodrigues ◽  
...  

POROS ◽  
2021 ◽  
Vol 17 (1) ◽  
pp. 26
Author(s):  
Sobron Y. Lubis ◽  
Sofyan Djamil ◽  
Adianto Adianto ◽  
Amor Santosa ◽  
Edric VM.

In the machining process, increased production can be done by increasing the use of cuttingparameters. However, the use of high cutting parameters has an effect on the wear of the cutting toolused. The aim of this research is to analyze the wear and tear that occurs on cutting tools and tool lifewhen cutting AISI 4140 steel by using variations in cutting speed. The machining process uses a CNClathe by turning the surface of the AISI 4140 steel workpiece. The wear criteria are determined when thecutting tool has reached the edge wear limit (VB) of 0.3 mm. Observation and measurement of carbidecutting tools are carried out every 5 minutes the machining process is carried out. If the cutting tool hasnot shown the specified wear value, then the cutting tool then cuts, so that the wear value is obtained.From the research conducted it was found that at a cutting speed of 160 m / min the cutting tool iscapable of cutting for 39 minutes, 13 seconds. At a cutting speed of 180 m / min the cutting tool is capableof cutting for 38 minutes, 14 seconds. At a cutting speed of 200 m / min the cutting tool is capable ofcutting for 33 minutes, 8 seconds. At a cutting speed of 240 m / min the cutting tool is capable of cuttingfor 26 minutes, 3 seconds. Taylor's advanced tool life for the coated carbide cutting tool in turning AISI4140 steel material is: Vc. Tl.0.073 = 8203.


2021 ◽  
Vol 9 (4B) ◽  
Author(s):  
Abidin Şahinoğlu ◽  
◽  
Mohammad Rafighi ◽  

The present study investigated the machinability aspects, namely, surface roughness, sound intensity, power consumption, and crater wear, during dry turning of hardened AISI 4140 steel (63 HRC) employing (TiCN/Al2O3/TiN) multilayer-coated carbide inserts under dry cutting condition. The relationship between machining parameters and output parameters was determined using the Taguchi design. The analysis of variance was employed to evaluate the contributions of input parameters on output parameters. The main effect plots illustrated the impacts of cutting speed, feed, and depth of cut on response variables. Results show that the feed was the most dominant factor that affects surface roughness. Increasing the feed value increases the surface roughness, power consumption, and sound intensity. In the other part of this study, the constant values for feed (0.3 mm/rev), depth of cut (0.7 mm), and cutting speed (150 m/min) have been selected to evaluate a tool life that has 0.3 mm crater wear criteria. The results indicated that multilayer-coated carbide inserts presented very good tool life and reached 0.3 mm in 90 min. The experimental study results showed that chipping and abrasion were found to be the significant wear mechanism during hard turning of AISI 4140 steel. The cutting speed was the most significant parameter on the tool wear, although high cutting speed results the good surface finish but adversely increases the tool crater wear.


2021 ◽  
Vol 1173 (1) ◽  
pp. 012027
Author(s):  
M Badaruddin ◽  
B Bakti ◽  
B Prasetyo ◽  
Sugiyanto

Author(s):  
A. Ballesteros-Arguello ◽  
F.O. Ramírez-Reyna ◽  
G.A. Rodríguez-Castro ◽  
A. Meneses-Amador ◽  
D. Fernández-Valdés ◽  
...  

2021 ◽  
Vol 63 (8) ◽  
pp. 742-747
Author(s):  
Menderes Kam ◽  
Hamit Saruhan

Abstract The main objective of the present study is to experimentally investigate and figure out the effect of deep cryogenic treatment in improving dynamic behaviors in terms of damping of a rotating shaft supported by rolling element bearings. An AISI 4140 steel for rotating shafts was selected for the experiments because it is the most widely used material in most industries for a wide range of applications such as machinery components, crankshafts, motor shafts, axle shafts, and railway locomotive traction motor shafts. Untreated, conventionally heat treated, deep cryogenic treated, and deep cryogenic treated and tempered shafts were used for the experiments to observe damping behavior changes of the shafts. Deep cryogenic treated and deep cryogenic treated and tempered shafts were cooled from pre-tempering temperature to -140 °C and held for tempering hold times of 12, 24, 36, and 48 hours. So, ten sets of shafts were employed for the experiment. The vibration data was captured for each of the shafts for five different shaft running speeds 600, 1200, 1800, 2400 and 3000 rpm. The results showed that damping ability of the deep cryogenic treated shaft at a hold time of 36 hours was superior to that of the others shafts.


Sign in / Sign up

Export Citation Format

Share Document