The Effects of Haptic Feedback and Visual Distraction on Pointing Task Performance

2015 ◽  
Vol 32 (2) ◽  
pp. 89-102 ◽  
Author(s):  
Brendan Corbett ◽  
Chang S. Nam ◽  
Takehiko Yamaguchi
Author(s):  
Kiana Kia ◽  
Peter W Johnson ◽  
Jeong Ho Kim

This study compared whole body vibration (WBV), muscle activity and non-driving task performance between different seat suspension settings in a simulated autonomous passenger car environment. To simulate autonomous vehicle environment, field-measured vibration profiles were recreated on a large-scale 6-degree-of-freedom motion platform. In a repeated-measures laboratory experiment, we measured whole body vibration, muscle activity (neck, shoulder and low back), participants non-driving task performance while participants performed non-driving tasks (pointing task with a laptop trackpad, keyboard typing, web-browsing, and reading) on three different suspension seats mounted on the motion platform: vertical (z-axis) electromagnetic active suspension, multi-axial (lateral (y-axis) and vertical (z-axis)) electromagnetic active suspension, and no suspension (industry standard suspension-less seat for passenger cars). The average weighted vibration [A(8)] and vibration dose value [VDV(8)] showed that the seat measured vibration on both the vertical [A(8) = 0.29 m/s2 and VDV(8) = 10.70 m/s1.75] and multi-axial suspension seats [A(8) = 0.29 m/s2 and VDV(8) = 10.22m/s1.75] were lower than no-suspension seat vibration [A(8) = 0.36 m/s2 and VDV(8) = 12.84 m/s1.75]. Despite the significant differences in WBV between the different suspensions there were no significant differences across three different suspension seats in typing performance (typing speed and accuracy: p’s > 0.83), pointing task performance (movement time and accuracy: p’s > 0.87), web-browsing (number of questions and webpages read: p = 0.42), and reading (number of words read: p = 0.30). The muscle activity in low back (erector spinae) and shoulder (trapezius) muscles also did not show any significant differences (p’s > 0.22). These laboratory study findings indicated that despite the significant reduction in WBV, neither vertical nor multi-axial active suspension seats improve non-driving task performance as compared to the no-suspension seat.


2010 ◽  
Vol 19 (3) ◽  
pp. 197-212 ◽  
Author(s):  
Raquel Viciana-Abad ◽  
Arcadio Reyes Lecuona ◽  
Matthieu Poyade

This paper explores the influence of passive haptic feedback on presence and task performance using two important interaction metaphors. We compared direct interaction with the user's hand with interaction using a stylus. Twenty-four participants performed a simple selection task consisting of pressing buttons while playing a memory game, with haptic feedback and interaction metaphor as the independent variables. We measured task performance by computing errors and time between button presses. We measured presence with questionnaires and through a new method based on users' involuntary movements. Our results suggest that passive haptic feedback improves both presence and task performance. However, small but significant differences related to the interaction metaphor were only apparent when haptic feedback was not provided.


2005 ◽  
Vol 14 (6) ◽  
pp. 677-696 ◽  
Author(s):  
Christoph W. Borst ◽  
Richard A. Volz

We present a haptic feedback technique that combines feedback from a portable force-feedback glove with feedback from direct contact with rigid passive objects. This approach is a haptic analogue of visual mixed reality, since it can be used to haptically combine real and virtual elements in a single display. We discuss device limitations that motivated this combined approach and summarize technological challenges encountered. We present three experiments to evaluate the approach for interactions with buttons and sliders on a virtual control panel. In our first experiment, this approach resulted in better task performance and better subjective ratings than the use of only a force-feedback glove. In our second experiment, visual feedback was degraded and the combined approach resulted in better performance than the glove-only approach and in better ratings of slider interactions than both glove-only and passive-only approaches. A third experiment allowed subjective comparison of approaches and provided additional evidence that the combined approach provides the best experience.


1984 ◽  
Vol 27 (4) ◽  
pp. 549-556 ◽  
Author(s):  
David N. Shorr ◽  
Philip S. Dale

Two studies, one correlational and one experimental, supported the hypothesis that 4- and 5-year-olds' performance on a picture-pointing grammatical comprehension task administered under standard procedures is highly influenced by reflectivity style. In the first study, a substantial correlation was obtained between reflectivity and picture-pointing grammatical comprehension task performance. This correlation was significantly greater than that between reflectivity and object-manipulation grammatical comprehension task performance. In the second study, a reflectivity-promoting but grammatically irrelevant modification in the administration of the picture-pointing task resulted in significantly improved comprehension scores and a significantly lower correlation with reflectivity.


2010 ◽  
Vol 7 (3) ◽  
pp. 217-230 ◽  
Author(s):  
L. Santos-Carreras ◽  
R. Beira ◽  
A. Sengül ◽  
R. Gassert ◽  
H. Bleuler

The introduction of Minimally Invasive Surgery (MIS) has revolutionised surgical care, considerably improving the quality of many surgical procedures. Technological advances, particularly in robotic surgery systems, have reduced the complexity of such an approach, paving the way for even less invasive surgical trends. However, the fact that haptic feedback has been progressively lost through this transition is an issue that to date has not been solved. Whereas traditional open surgery provides full haptic feedback, the introduction of MIS has eliminated the possibility of direct palpation and tactile exploration. Nevertheless, these procedures still provide a certain amount of force feedback through the rigid laparoscopic tool. Many of the current telemanipulated robotic surgical systems in return do not provide full haptic feedback, which to a certain extent can be explained by the requirement of force sensors integrated into the tools of the slave robot and actuators in the surgeon’s master console. In view of the increased complexity and cost, the benefit of haptic feedback is open to dispute. Nevertheless, studies have shown the importance of haptic feedback, especially when visual feedback is unreliable or absent. In order to explore the importance of haptic feedback for the surgeon’s master console of a novel teleoperated robotic surgical system, we have identified a typical surgical task where performance could potentially be improved by haptic feedback, and investigate performance with and without this feedback. Two rounds of experiments are performed with 10 subjects, six of them with a medical background. Results show that feedback conditions, including force feedback, significantly improve task performance independently of the operator’s suturing experience. There is, however, no further significant improvement when torque feedback is added. Consequently, it is deduced that force feedback in translations improves subject’s dexterity, while torque feedback might not further benefit such a task.


2004 ◽  
Vol 11 (4) ◽  
pp. 357-386 ◽  
Author(s):  
Juan Pablo Hourcade ◽  
Benjamin B. Bederson ◽  
Allison Druin ◽  
François Guimbretière

Author(s):  
Göran A. V. Christiansson

Haptic feedback is known to improve teleoperation task performance for a number of tasks, and one important question is which haptic cues are the most important for each specific task. This research quantifies human performance in an assembly task for two types of haptic cues: low-frequency (LF) force feedback and high-frequency (HF) force feedback. A human subjects study was performed with those two main factors: LF force feedback on/off and HF force (acceleration) feedback on/off. All experiments were performed using a three degree-of-freedom teleoperator where the slave device has a low intrinsic stiffness, while the master device on the other hand is stiff. The results show that the LF haptic feedback reduces impact forces, but does not influence low-frequency contact forces or task completion time. The HF information did not improve task performance, but did reduce the mental load of the teleoperator, but only in combination with the LF feedback.


Sign in / Sign up

Export Citation Format

Share Document