FOM – a MATLAB toolbox of first-order methods for solving convex optimization problems

2018 ◽  
Vol 34 (1) ◽  
pp. 172-193 ◽  
Author(s):  
Amir Beck ◽  
Nili Guttmann-Beck
Author(s):  
Yi Xu ◽  
Zhuoning Yuan ◽  
Sen Yang ◽  
Rong Jin ◽  
Tianbao Yang

Extrapolation is a well-known technique for solving convex optimization and variational inequalities and recently attracts some attention for non-convex optimization. Several recent works have empirically shown its success in some machine learning tasks. However, it has not been analyzed for non-convex minimization and there still remains a gap between the theory and the practice. In this paper, we analyze gradient descent  and stochastic gradient descent with extrapolation for finding an approximate first-order stationary point in smooth non-convex optimization problems. Our convergence upper bounds show that the algorithms with extrapolation can be accelerated than without extrapolation.


Author(s):  
Hao Luo ◽  
Long Chen

AbstractConvergence analysis of accelerated first-order methods for convex optimization problems are developed from the point of view of ordinary differential equation solvers. A new dynamical system, called Nesterov accelerated gradient (NAG) flow, is derived from the connection between acceleration mechanism and A-stability of ODE solvers, and the exponential decay of a tailored Lyapunov function along with the solution trajectory is proved. Numerical discretizations of NAG flow are then considered and convergence rates are established via a discrete Lyapunov function. The proposed differential equation solver approach can not only cover existing accelerated methods, such as FISTA, Güler’s proximal algorithm and Nesterov’s accelerated gradient method, but also produce new algorithms for composite convex optimization that possess accelerated convergence rates. Both the convex and the strongly convex cases are handled in a unified way in our approach.


Sign in / Sign up

Export Citation Format

Share Document