Thermally stable and organosoluble poly(amide-imide)s based on the imide ring-preformed dicarboxylic acids derived from 3,4′-oxydianiline with trimellitic anhydride and 6FDA

2017 ◽  
Vol 54 (9) ◽  
pp. 582-588 ◽  
Author(s):  
Yung-Chung Chen ◽  
Sheng-Huei Hsiao ◽  
Cheng-Hsin Wu
2015 ◽  
Vol 69 (5) ◽  
pp. 523-536
Author(s):  
Jelena Popovic-Djordjevic ◽  
Vesna Vitnik ◽  
Zeljko Vitnik ◽  
Milovan Ivanovic

Glutarimides, 2,6-dioxopiperidines are compounds that rarely occur in natural sources, but so far isolated ones exert widespread pharmacological activities, which makes them valuable as potential pharmacotherapeutics. Glutarimides act as androgen receptor antagonists, anti-inflammatory, anxiolytics, antibacterials, and tumor suppressing agents. Some synthetic glutarimide derivatives are already in use as immunosuppressive and sedative (e.g., thalidomide) or anxiolytics (buspirone) drugs. The wide applicability of this class of compounds, justify the interest of scientists to explore new pathways for its syntheses. General methods for synthesis of six-membered imide ring, are presented in this paper. These methods include: a) reaction of dicarboxylic acids with ammonia or primary amine, b) reactions of cyclization: amido-acids, diamides, dinitriles, nitrilo-acids, amido-nitriles, amido-esters, amidoacyl-chlorides or diacyl-chlorides, c) adition of carbon-monoxide on a,b-unsaturated amides, d) oxidation reactions, e) Michael adition of active methylen compounds on methacrylamide or conjugated amides. Some of the described methods are used for closing glutarimide ring in syntheses of farmacological active compounds sesbanimide and aldose reductase inhibitors (ARI). Analyses of the geometry, as well as, the spectroscopic analyses (NMR and FT-IR) of some glutarimides are presented because of their broad spectrum of pharmacological activity. To elucidate structures of glutarimides, geometrical parameters of newly synthesized tert-pentyl-1-benzyl-4-methyl-glutarimide-3-carboxylate (PBMG) are analyzed and compared with the experimental data from X-ray analysis for glutarimide. Moreover, molecular electrostatic potential (MEP) surface which is plotted over the optimized geometry to elucidate the reactivity of PBMG molecule is analyzed. The electronic properties of glutarimide derivatives are explained on the example of thalidomide. The Frontier Molecular Orbital (FMO) and their energies are presented, as well as the energy gap between them.


2005 ◽  
Vol 12 (4) ◽  
pp. 289-294 ◽  
Author(s):  
Sheng-Huei Hsiao ◽  
Chin-Ping Yang ◽  
Chien-Wei Chen ◽  
Guey-Sheng Liou

1998 ◽  
Vol 512 ◽  
Author(s):  
C. Hecht ◽  
R. Kummer ◽  
A. Winnacker

ABSTRACTIn the context of spectral-hole burning experiments in 4H- and 6H-SiC doped with vanadium the energy positions of the V4+/5+ level in both polytypes were determined in order to resolve discrepancies in literature. From these numbers the band offset of 6H/4H-SiC is calculated by using the Langer-Heinrich rule, and found to be of staggered type II. Furthermore the experiments show that thermally stable electronic traps exist in both polytypes at room temperature and considerably above, which may result in longtime transient shifts of electronic properties.


2019 ◽  
Author(s):  
Mohammad Mosharraf Hossain ◽  
Joshua Atkinson ◽  
Scott Hartley

Dissipative (nonequilibrium) assembly powered by chemical fuels has great potential for the creation of new adaptive chemical systems. However, while molecular assembly at equilibrium is routinely used to prepare complex architectures from polyfunctional monomers, species formed out of equilibrium have, to this point, been structurally very simple. In most examples the fuel simply effects the formation of a single transient covalent bond. Here, we show that chemical fuels can assemble bifunctional components into macrocycles containing multiple transient bonds. Specifically, dicarboxylic acids give aqueous dianhydride macrocycles on treatment with a carbodiimide. The macrocycle is assembled efficiently as a consequence of both fuel-dependent and -independent mechanisms: it undergoes slower decomposition, building up as the fuel recycles the components, and is a favored product of the dynamic exchange of the anhydride bonds. These results create new possibilities for generating structurally sophisticated out-of-equilibrium species.


2019 ◽  
Author(s):  
Mohammad Mosharraf Hossain ◽  
Joshua Atkinson ◽  
Scott Hartley

Dissipative (nonequilibrium) assembly powered by chemical fuels has great potential for the creation of new adaptive chemical systems. However, while molecular assembly at equilibrium is routinely used to prepare complex architectures from polyfunctional monomers, species formed out of equilibrium have, to this point, been structurally very simple. In most examples the fuel simply effects the formation of a single transient covalent bond. Here, we show that chemical fuels can assemble bifunctional components into macrocycles containing multiple transient bonds. Specifically, dicarboxylic acids give aqueous dianhydride macrocycles on treatment with a carbodiimide. The macrocycle is assembled efficiently as a consequence of both fuel-dependent and -independent mechanisms: it undergoes slower decomposition, building up as the fuel recycles the components, and is a favored product of the dynamic exchange of the anhydride bonds. These results create new possibilities for generating structurally sophisticated out-of-equilibrium species.


Author(s):  
N. N. Loy ◽  
S. N. Gulina

The effect of presowing seed treatment on various concentrations of dicarboxylic (organic) acids on the sowing characteristics of spring barley has been studied. Seeds were treated with organic acids obtained by exposing cuttings to the radiation with a dose of 100 kGy and consequent hydrolysis, in concentrations: 1•10-7 %; 1•10-9; 1•10-11; 1•10-13 and 1•10-15 % on a laboratory rotary machine RVO-64 for one day before laying for germination. Distilled water was used for the control case. The rate of application of the working solution calculated as 10 liters / ton of seeds. Seeds were germinated in filter paper rolls in accordance with GOST 12038-84 requirements. The temperature was maintained at +24 ° C in the thermostat where the glasses with rolls were placed. For determination of germinative power and laboratory germination the sprouted seeds were evaluated after three and seven days, respectively. In laboratory experiments it was established that the treatment of barley seeds of varieties Zazersky 85, Nur and Vladimir with organic acids (OK) in different concentrations had both a stimulating and a negative effect. On the Zazersky 85 variety, in variants with acid concentrations of 1•10-9 and 1•10-11, an increase in germination energy (EP) by 2-4% and a significant decrease (by 3-4%) of laboratory germination (LV) of barley seeds were noted. On the Nur variety, the increase in EP was observed at 4% (concentration 1•10-11), LV and seed growth force (CPC) by 2-7% at a concentration of 1•10-7 and in the dose range 1•10-11 - 1•10-14 compared to the control values. On the grade of Vladimir, an increase in EP, LV, and CPC was found to increase by 1-6% at concentrations OK 1•10-7 and 1•10-13. It was shown that the treatment of seeds with acids led to an increase in the length of the germ in all studied varieties (by 3-9%) and dry biomass of 7-day-old seedlings - by 3-6%. Consequently, the treatment of seeds with a mixture of dicarboxylic acids has a stimulating effect on the sowing quality of spring barley.


Sign in / Sign up

Export Citation Format

Share Document