The role of miRNAs and lncRNAs in conferring resistance to doxorubicin

2021 ◽  
pp. 1-48
Author(s):  
Mohammad Taheri ◽  
Bashdar Mahmud Hussen ◽  
Farhad Tondro Anamag ◽  
Hamed Shoorei ◽  
Marcel E Dinger ◽  
...  
2006 ◽  
Vol 231 (1) ◽  
pp. 87-93 ◽  
Author(s):  
Vasil F. Chekhun ◽  
Galina I. Kulik ◽  
Olga V. Yurchenko ◽  
Volodymyr P. Tryndyak ◽  
Igor N. Todor ◽  
...  

2021 ◽  
Author(s):  
Usama Khamis Hussein ◽  
Asmaa Gamal Ahmed ◽  
Yiping Song ◽  
See-Hyoung Park ◽  
Kyoung Min Kim ◽  
...  

Abstract BackgroundCK2α/CSNK2A1 is involved in cancer progression by phosphorylating various signaling molecules. Considering the role of CSNK2A1 in cancer progression and phosphorylation of SIRT6 and the role of SIRT6 in chemoresistance through the DNA damage repair pathway, CSNK2A1 and SIRT6 might be involved in resistance to the conventional anti-cancer therapies.MethodsWe evaluated the expression of CSNK2A1 in the 37 osteosarcoma patients and investigated the effects of CSNK2A1 and phosphorylation of SIRT6 on Ser338 on the resistance to the anti-cancer effects of doxorubicin. Results Higher expression of CSNK2A1 predicted shorter overall survival and relapse-free survival in both general osteosarcoma patients and sub-population of patients who received postoperative chemotherapies. U2OS and KHOS/NP osteosarcoma cells with induced overexpression of CSNK2A1 were resistant to cytotoxic effects of doxorubicin, and knock-down of CSNK2A1 potentiated the cytotoxic effects of doxorubicin. CSNK2A1 overexpression-mediated resistance to doxorubicin was associated with SIRT6 phosphorylation and induction of the DNA damage repair pathway molecules ATM and Chk2. CSNK2A1 and SIRT6 mediated resistance to doxorubicin in vivo was attenuated via mutation of SIRT6 at the Ser338 phosphorylation site. Emodin, a CSNK2A1 inhibitor, potentiated the cytotoxic effects of doxorubicin in osteosarcoma cells in vitro. ConclusionsThis study demonstrates that the expression of CSNK2A1 might be used as a prognostic indicator of osteosarcoma. In addition, it suggests that CSNK2A1 induces resistance to doxorubicin through phosphorylation of SIRT6-mediated activation of the DNA damage repair pathway. Therefore, blocking the CSNK2A1-SIRT6-DNA damage repair pathway might be a new therapeutic stratagem for the poor prognostic subgroup of osteosarcomas with high expression of CSNK2A1.


2020 ◽  
Author(s):  
Zhongkai Zhang ◽  
Sang Hoon Ha ◽  
Young Jae Moon ◽  
Usama Khamis Hussein ◽  
Yiping Song ◽  
...  

Abstract Background: SIRT6 has diverse roles in cells, and the role of SIRT6 in tumorigenesis is controversial. Considering the role of SIRT6 as an inducer of DNA damage repair, it might be involved in resistance to anti-cancer therapy. Methods: We evaluated the prognostic significance of SIRT6 in 37 osteosarcomas and investigated the therapeutic efficacy of SIRT6 on the anticancer effects of doxorubicin, olaparib, and ATM inhibitor. Results: Immunohistochemical expression of SIRT6 was significantly associated with shorter overall survival and relapse-free survival of osteosarcoma patients, especially in patients who received adjuvant chemotherapy. In U2OS and KHOS/NP osteosarcoma cells, knock-down of SIRT6 significantly potentiated apoptotic effects of doxorubicin and SIRT6 overexpression induced resistance to doxorubicin. Moreover, SIRT6 induced the DNA damage repair pathway and SIRT6-mediated resistance to doxorubicin was attenuated by blocking the DNA damage repair pathway with olaparib and ATM inhibitor. Conclusions: This study suggests that suppression of SIRT6 in combination with doxorubicin might be an effective modality in the treatment of osteosarcoma patients, especially for osteosarcomas with shorter survival with high expression of SIRT6.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 1083-1083
Author(s):  
Iris Garrido-Cano ◽  
Anna Adam-Artigues ◽  
Ana Lameirinhas ◽  
Birlipta Pattanayak ◽  
Eduardo Tormo ◽  
...  

1083 Background: Triple-negative breast cancer (TNBC) is an aggressive breast cancer (BC) subtype comprising approximately 15% of BC. Conventional cytotoxic chemotherapies continue to be the mainstay for treatment of this BC, which lacks targetable markers. In this context, microRNAs have been described to have an important role. The aim of this work was to elucidate the function of miR-503-5p in doxorubicin resistance in TNBC. Methods: miR-503-5p expression was evaluated in the TNBC cell line with acquired resistance to doxorubicin (MDA-MB-231R) and its parental cell line (MDA-MB-231), by qRT-PCR. Studies of gain/loss of function of miR-503-5p were carried out in MDA-MB-231 and MDA-MB-231R cells by transient transfection of mimics and inhibitors. Cells were treated with doxorubicin, and viability was measured by flow cytometry and MTT assay. The role of miR-503-5p was also evaluated in vivo by Chicken Chorioallantoic Membrane (CAM) assay. MDA-MB-231 cells transfected with miR-503-5p mimic or scramble miRNA were inoculated onto the CAM of fertilized chicken eggs. After 48 hours, tumours were treated with doxorubicin or supplemented media for 48 hours and tumour growth was measured. miR-503-5p expression was quantified by qRT-PCR in a retrospective cohort of 74 TNBC patients treated with anthracycline + taxane regimens. Overall survival analysis for miR-503-5p in TNBC patients from METABRIC dataset was evaluated by the KM plotter online tool. Results: miR-503-5p was significantly upregulated in the resistant MDA-MB-231R TNBC cell line when compared to its parental cell line MDA-MB-231 (̃3.5-fold; p< 0.0001). Then, gain/loss function assays showed that upregulation of miR-503-5p in MDA-MB-231 cells increased resistance to doxorubicin ( p< 0.0001) and its downregulation in MDA-MB-231R cells had the opposite effect ( p< 0.0001). Moreover, the role of miR-503-5p was also confirmed in the CAM assay in vivo model, where miR-503-5p overexpression inhibited the effect of doxorubicin. In our cohort of patients, miR-503-5p expression levels in core biopsies sampled before preoperative chemotherapy were associated with residual cancer burden (RCB). miR-503-5p expression was significantly higher in patients with poor response to chemotherapy (RCB II and III; median, 95% CI: 0.00055, 0.00024 - 0.00136) than in patients with good response (RCB 0 and I; median, 95% CI: 0.00018, 0.00011 - 0.00034; p = 0.036). Moreover, we confirmed that TNBC patients with high expression of miR-503-5p had worse overall survival than patients with low expression ( p= 0.016). Conclusions: We identified miR-503-5p as a modulator of doxorubicin resistance in TNBC. Our in vitro findings are supported by the clinical data of TNBC patients and in vivo assays. Hence, the inhibition of miR-503-5p may be a promising strategy to improve chemotherapeutic efficacy. Moreover, the expression levels of miR-503-5p may be used as a biomarker for therapy response in TNBC.


2020 ◽  
Author(s):  
Zhongkai Zhang ◽  
Sang Hoon Ha ◽  
Young Jae Moon ◽  
Usama Khamis Hussein ◽  
Yiping Song ◽  
...  

Abstract Background SIRT6 has diverse roles in cells, and the role of SIRT6 in tumorigenesis is controversial. Considering the role of SIRT6 as an inducer of DNA damage repair, it might be involved in resistance to anti-cancer therapy. Methods We evaluated the prognostic significance of SIRT6 in 37 osteosarcomas and investigated the therapeutic efficacy of SIRT6 on the anticancer effects of doxorubicin, olaparib, and ATM inhibitor. Results Immunohistochemical expression of SIRT6 was significantly associated with shorter overall survival and relapse-free survival of osteosarcoma patients, especially in patients who received adjuvant chemotherapy. In U2OS and KHOS/NP osteosarcoma cells, knock-down of SIRT6 significantly potentiated apoptotic effects of doxorubicin and SIRT6 overexpression induced resistance to doxorubicin. Moreover, SIRT6 induced the DNA damage repair pathway and SIRT6-mediated resistance to doxorubicin was attenuated by blocking the DNA damage repair pathway with olaparib and ATM inhibitor. Conclusions This study suggests that suppression of SIRT6 in combination with doxorubicin might be an effective modality in the treatment of osteosarcoma patients, especially for osteosarcomas with shorter survival with high expression of SIRT6.


Author(s):  
Zhongkai Zhang ◽  
Sang Hoon Ha ◽  
Young Jae Moon ◽  
Usama Khamis Hussein ◽  
Yiping Song ◽  
...  

Abstract Background SIRT6 has diverse roles in cells, and the role of SIRT6 in tumorigenesis is controversial. Considering the role of SIRT6 as an inducer of DNA damage repair, it might be involved in resistance to anti-cancer therapy. Methods We evaluated the prognostic significance of SIRT6 in 37 osteosarcomas and investigated the therapeutic efficacy of SIRT6 on the anticancer effects of doxorubicin, olaparib, and ATM inhibitor. Results Immunohistochemical expression of SIRT6 was significantly associated with shorter overall survival and relapse-free survival of osteosarcoma patients, especially in patients who received adjuvant chemotherapy. In U2OS and KHOS/NP osteosarcoma cells, knock-down of SIRT6 significantly potentiated apoptotic effects of doxorubicin and SIRT6 overexpression induced resistance to doxorubicin. Moreover, SIRT6 induced the DNA damage repair pathway and SIRT6-mediated resistance to doxorubicin was attenuated by blocking the DNA damage repair pathway with olaparib and ATM inhibitor. Conclusions This study suggests that suppression of SIRT6 in combination with doxorubicin might be an effective modality in the treatment of osteosarcoma patients, especially for osteosarcomas with shorter survival with high expression of SIRT6.


BMC Cancer ◽  
2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Baoqing Guo ◽  
Adam Tam ◽  
Stacey A. Santi ◽  
Amadeo M. Parissenti

2005 ◽  
Vol 27 (1) ◽  
pp. 43-49
Author(s):  
A. E. Greijer ◽  
M. C. de Jong ◽  
G. L. Scheffer ◽  
A. Shvarts ◽  
P. J. van Diest ◽  
...  

Hypoxia has clinically been associated with resistance to chemotherapy. The aim of this study was to investigate whether hypoxia induces resistance to doxorubicin and mitoxantrone, two common drugs in cancer treatment, in MCF‐7 breast cancer cells, and SW1573 non‐small lung cancer cells. In addition, the role of drug transporters P‐gp, BCRP and MRP1 was analysed. Hypoxia induced resistance in MCF‐7 cells to mitoxantrone shifted the IC50 value from 0.09 μM (±0.01) to 0.54 μM (±0.06) under hypoxia, whereas survival of MCF‐7 and SW1573 cells in the presence of doxorubicin was not altered. Accumulation of mitoxantrone and daunorubicin, a doxorubicin fluorescent homologue, appeared to be 5.3 and 3.2 times lower in MCF‐7 cells, respectively. Cytotoxicity assays showed no increased functionality of the drug transporters P‐gp, BCRP and MRP1 under hypoxia. In addition, protein levels of these drug transporters were not changed. Medium of the MCF‐7 cells became more acidic under hypoxia thereby causing a decreased uptake of mitoxantrone. Hypoxia induces mitoxantrone resistance in MCF‐7 cells not mediated by the three major MDR transporters. Hypoxia‐induced acidification may cause this resistance by decreased cellular uptake together with a lowered cytotoxicity due to pH‐dependent topoisomerase type II activity.


Sign in / Sign up

Export Citation Format

Share Document