parental cell
Recently Published Documents


TOTAL DOCUMENTS

253
(FIVE YEARS 82)

H-INDEX

33
(FIVE YEARS 6)

Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 154
Author(s):  
Izabela N. F. Gomes ◽  
Renato J. da Silva-Oliveira ◽  
Luciane Sussuchi da Silva ◽  
Olga Martinho ◽  
Adriane F. Evangelista ◽  
...  

Cetuximab is the sole anti-EGFR monoclonal antibody that is FDA approved to treat head and neck squamous cell carcinoma (HNSCC). However, no predictive biomarkers of cetuximab response are known for HNSCC. Herein, we address the molecular mechanisms underlying cetuximab resistance in an in vitro model. We established a cetuximab resistant model (FaDu), using increased cetuximab concentrations for more than eight months. The resistance and parental cells were evaluated for cell viability and functional assays. Protein expression was analyzed by Western blot and human cell surface panel by lyoplate. The mutational profile and copy number alterations (CNA) were analyzed using whole-exome sequencing (WES) and the NanoString platform. FaDu resistant clones exhibited at least two-fold higher IC50 compared to the parental cell line. WES showed relevant mutations in several cancer-related genes, and the comparative mRNA expression analysis showed 36 differentially expressed genes associated with EGFR tyrosine kinase inhibitors resistance, RAS, MAPK, and mTOR signaling. Importantly, we observed that overexpression of KRAS, RhoA, and CD44 was associated with cetuximab resistance. Protein analysis revealed EGFR phosphorylation inhibition and mTOR increase in resistant cells. Moreover, the resistant cell line demonstrated an aggressive phenotype with a significant increase in adhesion, the number of colonies, and migration rates. Overall, we identified several molecular alterations in the cetuximab resistant cell line that may constitute novel biomarkers of cetuximab response such as mTOR and RhoA overexpression. These findings indicate new strategies to overcome anti-EGFR resistance in HNSCC.


Author(s):  
Tomofumi Yamamoto ◽  
Jun Nakayama ◽  
Yusuke Yamamoto ◽  
Masahiko Kuroda ◽  
Yutaka Hattori ◽  
...  

Multiple myeloma (MM) is a hematopoietic malignancy whose prognosis has improved with the development of new agents such as lenalidomide over the last decade. However, long-term exposure to drugs induces the acquisition of resistance by MM cells and leads to treatment failure and poor prognosis. Here, we show the molecular and cellular mechanisms of lenalidomide resistance in MM. In a comparison between lenalidomide-resistant cell lines and the parental cell lines, the EV (Extracellular versicles) secretion and adherence abilities were significantly elevated in the resistant cells. Whole-transcriptome analysis revealed that the SORT1 and LAMP2 genes were key regulators of EV secretion. Silencing of these genes caused decreased EV secretion and loss of cell adhesion in the resistant cells, resulting in increased sensitivity to lenalidomide. Analysis of publicly available transcriptome data confirmed the relationship between genes related to EV secretion and cell adhesion and patient prognosis. Together, our findings reveal a novel mechanism of lenalidomide resistance in MM mediated by EV secretion and cell adhesion via SORT1 and LAMP2.


2021 ◽  
Vol 11 ◽  
Author(s):  
Rodolfo L. Chavez-Dominguez ◽  
Mario A. Perez-Medina ◽  
Jose S. Lopez-Gonzalez ◽  
Miriam Galicia-Velasco ◽  
Margarita Matias-Florentino ◽  
...  

Significant advances have been made recently in the development of targeted therapy for lung adenocarcinoma. However, platinum-based chemotherapy remains as the cornerstone in the treatment of this neoplasm. This is the treatment option for adenocarcinomas without EGFR gain-of-function mutations or tumors that have developed resistance to targeted therapy. The High-Mobility Group Box 1 (HMGB1) is a multifunctional protein involved in intrinsic resistance to cisplatin. HMGB1 is released when cytotoxic agents, such as cisplatin, induce cell death. In the extracellular milieu, HMGB1 acts as adjuvant to induce an antitumor immune response. However, the opposite effect favoring tumor progression has also been reported. In this study, the effects of cisplatin in lung adenocarcinoma cell lines harboring clinically relevant mutations, such as EGFR mutations, were studied. Subcellular localization of HMGB1 was detected in the cell lines and in viable cells after a single exposure to cisplatin, which are designated as cisplatin-persistent cells. The mRNA expression of the receptor for advanced glycation end products (RAGE), TLR-2, and TLR-4 receptors was measured in parental cell lines and their persistent variants. Finally, changes in plasma HMGB1 from a cohort of lung adenocarcinoma patients without EGFR mutation and treated with cisplatin-based therapy were analyzed. Cisplatin-susceptible lung adenocarcinoma cell lines died by apoptosis or necrosis and released HMGB1. In cisplatin-persistent cells, nuclear relocalization of HMGB1 and overexpression of HMGB1 and RAGE, but not TLR-2 or TLR-4, were observed. In tumor cells, this HMGB1–RAGE interaction may be associated with the development of cisplatin resistance. The results indicate a direct relationship between the plasma levels of HMGB1 and overall survival. In conclusion, HMGB1 may be an effective biomarker associated with increased overall survival of lung adenocarcinoma patients.


Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 886
Author(s):  
Tania Limongi ◽  
Francesca Susa ◽  
Bianca Dumontel ◽  
Luisa Racca ◽  
Michela Perrone Donnorso ◽  
...  

Cellular communications take place thanks to a well-connected network of chemical–physical signals, biomolecules, growth factors, and vesicular messengers that travel inside or between cells. A deep knowledge of the extracellular vesicle (EV) system allows for a better understanding of the whole series of phenomena responsible for cell proliferation and death. To this purpose, here, a thorough immuno-phenotypic characterization of B-cell EV membranes is presented. Furthermore, the cellular membrane of B lymphocytes, Burkitt lymphoma, and human myeloid leukemic cells were characterized through cytofluorimetry assays and fluorescent microscopy analysis. Through cytotoxicity and internalization tests, the tropism of B lymphocyte-derived EVs was investigated toward the parental cell line and two different cancer cell lines. In this study, an innate capability of passive targeting of the native EVs was distinguished from the active targeting capability of monoclonal antibody-engineered EVs, able to selectively drive the vesicles, enhancing their internalization into the target cancer cells. In particular, the specific targeting ability of anti-CD20 engineered EVs towards Daudi cells, highly expressing CD20 marker on their cell membrane, was proved, while almost no internalization events were observed in HL60 cells, since they did not express an appreciable amount of the CD20 marker on their plasma membranes.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Pierre Sabatier ◽  
Christian M. Beusch ◽  
Amir A. Saei ◽  
Mike Aoun ◽  
Noah Moruzzi ◽  
...  

AbstractDetailed characterization of cell type transitions is essential for cell biology in general and particularly for the development of stem cell-based therapies in regenerative medicine. To systematically study such transitions, we introduce a method that simultaneously measures protein expression and thermal stability changes in cells and provide the web-based visualization tool ProteoTracker. We apply our method to study differences between human pluripotent stem cells and several cell types including their parental cell line and differentiated progeny. We detect alterations of protein properties in numerous cellular pathways and components including ribosome biogenesis and demonstrate that modulation of ribosome maturation through SBDS protein can be helpful for manipulating cell stemness in vitro. Using our integrative proteomics approach and the web-based tool, we uncover a molecular basis for the uncoupling of robust transcription from parsimonious translation in stem cells and propose a method for maintaining pluripotency in vitro.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4341-4341
Author(s):  
Mingying Zhang ◽  
Fangnan Xiao ◽  
Yunan Li ◽  
Zizhen Chen ◽  
Xiaoru Zhang ◽  
...  

Abstract Introduction: Chemoresistance and disease relapse remain the main obstacles responsible for treatment failure in leukemia. MicroRNAs (miRNAs) play essential roles in various physiological and pathological processes, including cell proliferation, differentiation, metabolism, and cancer development. The miR-106b-25 cluster consists of three miRNAs: miR-106b, miR-93 and miR-25. We have previously reported that miR-106b-25 was associated with chemoresistance by negatively regulated EP300 in breast cancer, but its role in hematological malignancies has not yet been elucidated. Here, we aim to clarify the biological role and underlying mechanisms of miR-106b-25 on drug resistance in leukemia. Methods: To see whether the miR-106b-25 was associated with the poor prognosis of AML patients, enriched LSCs (CD34 + cells) were isolated from the bone marrow of 18 newly diagnosed AML patients, the expression of miR-106b, miR-93, and miR-25 were examined, respectively. The expression levels of miR-106b, miR-93 and miR-25 were further determined in the doxorubicin-resistant leukemia cell line K562/A02 and HL60/ADR, compared with their parental cell lines. In addition, K562 cells were transduced with lentiviral vectors carrying miR-106b-25, and cell proliferation, drug resistance, colony-forming assay, apoptosis assays were performed to explore the function of miR-106b-25 overexpression in leukemia cells in vitro. To investigate the role of miR-106b-25 on tumor growth and overall survival after drug treatment, we performed xenotransplantation in nude mice using miR-106b-25 overexpressed K562 cells. To further clarify the function of each microRNA function in this cluster, K562 cells were also transduced with lentiviral vectors carrying individual miR-25, miR-93, or miR-106b separately. Cell proliferation, colony forming assay and cell apoptosis assay were also carried out subsequently. Simultaneously, RNA-sequencing was performed to reveal the underlying mechanisms of miR-106b-25 in the chemoresistance of myeloid leukemia. To experimentally confirm the direct target of the miR-106b-25 cluster in AMLs, we further performed a dual-luciferase reporter assay. Results: Upregulated miR-106b, miR-93 and miR-25 expression in enriched LSCs were significantly associated with shortened overall survival of AML patients. We also found miR-106b, miR-93 and miR-25 were significantly upregulated in drug-resistant leukemia cell lines compared with its parental cell lines. Overexpression of miR-106b-25 cluster promoted cell proliferation, led to resistance of K562 cells to doxorubicin, imatinib and ABT-737 (BCL-2 inhibitor) in liquid culture and drug-resistant colony-forming assays. Overexpression of miR-93 or miR-106b accelerated cell growth, and all the three miRNAs can promote drug-resistant colony-forming and inhibit cell apoptosis. RNA-sequencing (RNA-Seq) data revealed that multiple critical genes related to apoptotic pathways were downregulated after overexpressing miR-25, miR-93, miR-106b as well as the whole cluster, such as TP73, BAX, BAK1, Caspase-7, CDKN1A and BTG2. RT-qPCR confirmed that these genes are reduced with or without ABT-737 treatment. Luciferase assay further identified TP73 was a direct target of miR-93 and miR106b, BAK1 was a direct target of miR-25, and CASPASE-7 was a direct target of all these three miRNAs. Conclusions: In summary, we made the novel observation that miR-106-25 is associated with AML drug-resisitance and disease prognosis and identified TP73, BAK1 caspase-7 as a novel direct target of this cluster. Further studies revealed that the biological effects of miR-106b-25 cluster on leukemic cell proliferation, chemoresistance and apoptosis were mediated through regulation of apoptotic pathway. These findings indicate a promising diagnostic biomarker and a potential target therapeutic strategy for AML patients. Disclosures No relevant conflicts of interest to declare.


Author(s):  
Shary N Shelton ◽  
Sarah E Smith ◽  
Jay R Unruh ◽  
Sue L Jaspersen

Abstract The inner nuclear membrane (INM) proteome regulates gene expression, chromatin organization, and nuclear transport; however, it is poorly understood how changes in INM protein composition contribute to developmentally regulated processes, such as gametogenesis. We conducted a screen to determine how the INM proteome differs between mitotic cells and gametes. In addition, we used a strategy that allowed us to determine if spores synthesize their INM proteins de novo, rather than inheriting their INM proteins from the parental cell. This screen used a split-GFP complementation system, where we were able to compare the distribution of all C-terminally tagged transmembrane proteins in Saccharomyces cerevisiae in gametes to that of mitotic cells. Gametes contain a distinct INM proteome needed to complete gamete formation, including expression of genes linked to cell wall biosynthesis, lipid biosynthetic and metabolic pathways, protein degradation, and unknown functions. Based on the inheritance pattern, INM components are made de novo in the gametes. Whereas mitotic cells show a strong preference for proteins with small extraluminal domains, gametes do not exhibit this size preference likely due to the changes in the nuclear permeability barrier during gametogenesis. Taken together, our data provide evidence for INM changes during gametogenesis and shed light on mechanisms used to shape the INM proteome of spores.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5200
Author(s):  
Alessandra Battaglia ◽  
Alessia Piermattei ◽  
Alexia Buzzonetti ◽  
Tina Pasciuto ◽  
Nicole Zampetti ◽  
...  

Background: Ovarian cancer (OC) has recently attracted attention for the use of PD-1/PD-L1 axis blocking agents, with durable activity reported only in a subset of patients. The most used biomarker for sensitivity to the PD-1/PD-L1 axis blockade is tumour PD-L1 status by immunohistochemistry. However, patient stratification using this method suffers from intrinsic heterogeneity of OC, likely contributing to the unsatisfactory results obtained so far. Cells communicate with each other by releasing microvesicles (MVs) that carry parental cell surface features. Thus, we hypothesised that PD-L1+ tumour cells (TC) and infiltrating PD-L1+ leukocytes should shed MVs carrying surface PD-L1 that may serve as a proxy for the whole tumour PD-L1 status. Results: We showed for the first time the presence of measurable amounts of TC- and leukocyte-derived PD-L1+ MVs (range: 1.4–178.8 MVs/μL and 6.2–504.8 MVs/μL, respectively) in the plasma of high-grade serous OC (HGSOC) patients (n = 63), using a sensitive flow cytometry platform. The concentration of PD-L1+ MVs of either origin did not associate with the PD-L1 status of TCs and leukocytes in the tumour biopsies, suggesting that the circulating PD-L1+ MVs also included ones from locations not selected for immunohistochemistry analysis and represented the PD-L1 status of the whole tumour mass. In this study, we also describe the serendipitous discovery of circulating PD-L1+ MVs of platelet origin (10.3–2409.6 MVs/μL). Conclusions: The enumeration of circulating PD-L1+ MVs in HGSOC patients may provide a novel direction for assessing the tumour PD-L1 status and contribute to HGSOC patient stratification for immunotherapy interventions. The presence of circulating PD-L1+ MVs of platelet origin, a finding not yet reported in HGSOC patients, warrants further studies.


2021 ◽  
Author(s):  
Qiuchen Guo ◽  
Milos Spasic ◽  
Adam Maynard ◽  
Gregory J Goreczny ◽  
Jessica F Olive ◽  
...  

Over recent decades, cell lineage tracing, clonal analyses, molecular barcoding, and single cell-omic analysis methods have proven to be valuable tools for research and discovery. Here, we report a clonal molecular barcoding method, which we term SunCatcher, that enables longitudinal tracking and retrieval of live barcoded cells for further analysis. Briefly, single cell-derived clonal populations are generated from any complex cell population and each is infected with a unique, heritable molecular barcode. One can combine the barcoded clones to recreate the original parental cell population or generate custom pools of select clones, while also retaining stocks of each individual barcoded clone. We developed two different barcode deconvolution methods: a Next-Generation Sequencing method and a highly sensitive, accurate, rapid, and inexpensive quantitative PCR-based method for identifying and quantifying barcoded cells in vitro and in vivo. Because stocks of each individual clone are retained, one can analyze not only the positively selected clones but also the negatively selected clones result from any given experiment. We used SunCatcher to barcode individual clones from mouse and human breast cancer cell lines. Heterogeneous pools of barcoded cells reliably reproduced the original proliferation rates, tumor-forming capacity, and disease progression as the original parental cell lines. The SunCatcher PCR-based approach also proved highly effective for detecting and quantifying early spontaneous metastases from orthotopic sites that otherwise would not have been detected by conventional methods. We envision that SunCatcher can be applied to any cell-based studies and hope it proves a useful tool for the research community.


Sign in / Sign up

Export Citation Format

Share Document