Influence of Long-Term (9 yr) Composted and Stockpiled Feedlot Manure Application on Selected Soil Physical Properties of a Clay Loam Soil in Southern Alberta

2014 ◽  
Vol 23 (1) ◽  
pp. 1-10 ◽  
Author(s):  
J. J. Miller ◽  
B. W. Beasley ◽  
C. F. Drury ◽  
F. J. Larney ◽  
X. Hao
Author(s):  
Jim J. Miller ◽  
Mallory Owen ◽  
Ben Ellert ◽  
Xueming Yang ◽  
Craig F. Drury ◽  
...  

The objective was to quantify the effect of crop rotations, crop type, life cycle, nitrogen fertilizer, manure application, and fallow on soil hydrophobicity (SH). The SH was measured for a long-term (16 yr) dryland field experiment on a Dark Brown clay loam soil in southern Alberta, Canada. Mean SH was significantly (P ≤ 0.05) greater in rotations with grass, perennial crops, manure application, and continuous cropping; whereas cereal-legume rotations and N fertilizer effects were undetectable. A strong, positive correlation occurred between SH and soil organic carbon concentration (r=0.73). Soil water repellency should be measured on these plots using water-based methods.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Samuel I. Haruna ◽  
Nsalambi V. Nkongolo

We assessed the spatial variability of soil physical properties in a clay-loam soil cropped to corn and soybean. The study was conducted at Lincoln University in Jefferson City, Missouri. Soil samples were taken at four depths: 0–10 cm, 10–20, 20–40, and 40–60 cm and were oven dried at 105°C for 72 hours. Bulk density (BDY), volumetric (VWC) and gravimetric (GWC) water contents, volumetric air content (VAC), total pore space (TPS), air-filled (AFPS) and water-filled (WFPS) pore space, the relative gas diffusion coefficient (DIFF), and the pore tortuosity factor (TORT) were calculated. Results showed that, in comparison to depth 1, means for AFPS, Diff, TPS, and VAC decreased in Depth 2. Opposingly, BDY, Tort, VWC, and WFPS increased in depth 2. Semivariogram analysis showed that GWC, VWC, BDY, and TPS in depth 2 fitted to an exponential variogram model. The range of spatial variability (A0) for BDY, TPS, VAC, WFPS, AFPS, DIFF, and TORT was the same (25.77 m) in depths 1 and 4, suggesting that these soil properties can be sampled together at the same distance. The analysis also showed the presence of a strong (≤25%) to weak (>75%) spatial dependence for soil physical properties.


2007 ◽  
Vol 94 (2) ◽  
pp. 386-396 ◽  
Author(s):  
R BHATTACHARYYA ◽  
S CHANDRA ◽  
R SINGH ◽  
S KUNDU ◽  
A SRIVASTVA ◽  
...  

2002 ◽  
Vol 31 (3) ◽  
pp. 989-996 ◽  
Author(s):  
J. J. Miller ◽  
N. J. Sweetland ◽  
C. Chang

2017 ◽  
Vol 60 (4) ◽  
pp. 1325-1336 ◽  
Author(s):  
Carmelo Maucieri ◽  
Maurizio Borin

Abstract. The aim of this work was to evaluate the effects of soil texture and primary tillage type on soil CO2 emission and maize biomass production after digestate liquid fraction (DLF) spreading. The study was conducted in 2014 in two open fields at Terrasa Padovana (farm 1) and Bovolenta (farm 2) in the Veneto Region of Italy. Soil CO2 emission after digestate spreading was evaluated by comparing the effect of soil texture (sandy loam vs. clay loam) at farm 1 and the effect of long-term primary tillage management (>10 years) (ripping vs. plowing) in clay loam soil at farm 2. Unamended soil was considered the control at both farms. DLF was supplied before maize ( L.) sowing at a dose equal to 170 kg total nitrogen ha-1 using a splash-plate technique. DLF spreading determined a CO2 emission peak 1 h after spreading at both farms, with median emission values of 8.93 and 4.35 g m-2 h-1, respectively, from the sandy loam and clay loam soils at farm 1. At farm 2, primary tillage type did not exert a significant effect on CO2 emission peak, with a median value of 5.85 g m-2 h-1. About three days after DLF distribution, soil CO2 fluxes were less than 1 g m-2 h-1. The first soil harrowing and the first rainfall event after spreading determined significantly higher CO2 emissions from amended plots than from unamended plots for a few hours. At farm 1, soil CO2 emission during the maize growing season was significantly higher in the amended plots (+1.7 times) than in the unamended plots, which showed a median emission value of 0.29 g m-2 h-1; soil texture and tillage exerted no significant influence. Maize yield at dough stage was not significantly influenced by DLF at farm 1, with 22.7 ±1.6 Mg ha-1 and 18.7 ±2.8 Mg ha-1 in the clay loam and sandy loam soils, respectively. At farm 2, the distribution of DLF increased maize biomass production by +17% with respect to the unamended treatment that produced 18.0 ±2.4 Mg ha-1. Although the results reported in this article concern data from only one year, and further long-term experiments are needed to confirm our findings, they indicate that CO2 emissions after digestate distribution are lower in a clay loam soil than in a sandy loam soil and are not affected by primary tillage type. Keywords: Clay loam soil, Digestate splash-plate spreading, Plowing, Ripping, Sandy loam soil.


Sign in / Sign up

Export Citation Format

Share Document