scholarly journals Variability of Soil Physical Properties in a Clay-Loam Soil and Its Implication on Soil Management Practices

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Samuel I. Haruna ◽  
Nsalambi V. Nkongolo

We assessed the spatial variability of soil physical properties in a clay-loam soil cropped to corn and soybean. The study was conducted at Lincoln University in Jefferson City, Missouri. Soil samples were taken at four depths: 0–10 cm, 10–20, 20–40, and 40–60 cm and were oven dried at 105°C for 72 hours. Bulk density (BDY), volumetric (VWC) and gravimetric (GWC) water contents, volumetric air content (VAC), total pore space (TPS), air-filled (AFPS) and water-filled (WFPS) pore space, the relative gas diffusion coefficient (DIFF), and the pore tortuosity factor (TORT) were calculated. Results showed that, in comparison to depth 1, means for AFPS, Diff, TPS, and VAC decreased in Depth 2. Opposingly, BDY, Tort, VWC, and WFPS increased in depth 2. Semivariogram analysis showed that GWC, VWC, BDY, and TPS in depth 2 fitted to an exponential variogram model. The range of spatial variability (A0) for BDY, TPS, VAC, WFPS, AFPS, DIFF, and TORT was the same (25.77 m) in depths 1 and 4, suggesting that these soil properties can be sampled together at the same distance. The analysis also showed the presence of a strong (≤25%) to weak (>75%) spatial dependence for soil physical properties.

2015 ◽  
Vol 29 (2) ◽  
pp. 137-145 ◽  
Author(s):  
Samuel Idoko Haruna ◽  
Nsalambi Vakanda Nkongolo

Abstract Soil and crop management practices can affect the physical properties and have a direct impact on soil sustainability and crop performance. The objective of this study was to investigate how soil physical properties were affected by three years of tillage, cover crop and crop rotation treatments in a corn and soybean field. The study was conducted on a Waldron siltyloam soil at Lincoln University of Missouri. Soil physical properties studied were soil bulk density, volumetric and gravimetric water contents, volumetric air content, total pore space, air-filled and water-filled pore space, gas diffusion coefficient and pore tortuosity factor. Results showed significant interactions (p<0.05) between cover crop and crop rotation for bulk density, gravimetric and total pore space in 2013. In addition, cover crop also significantly interacted (p<0.05) with tillage for bulk density and total pore space. All soil physical properties studied were significantly affected by the depth of sampling (p<0.0001), except for bulk density, the pore tortuosity factor and total pore space in 2012, and gravimetric and volumetric in 2013. Overall, soil physical properties were significantly affected by the treatments, with the effects changing from one year to another. Addition of a cover crop improved soil physical properties better in rotation than in monoculture.


Agriculture ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 62 ◽  
Author(s):  
Karen Ordoñez-Morales ◽  
Martin Cadena-Zapata ◽  
Alejandro Zermeño-González ◽  
Santos Campos-Magaña

In many regions, conservation tillage has been shown to contribute to preserving soil properties. However, in order to promote this practice in new areas, it is necessary to generate information about its results in local environmental conditions. Our objective was to study the effect of No Tillage (NT), Vertical Tillage (VT) and Conventional Tillage (CT) on physical soil properties of a clay loam soil and on yields (Avena sativa L.), in a semiarid area of Mexico. From 2013 to 2016 an experiment was conducted in random blocks, with the three tillage systems as treatments. Four variables were measured; bulk density (Bd), pore space (P), hydraulic conductivity (Ks) and crop yield. Our results did show scarce differences between the tillage systems. Values ranged between 1.21 g cm−3 to 1.39 g cm−3 for Bd, 45% to 55% for P, and 4.29 mm h−1 to 13.61 mm h−1 for Ks. Although differences were not significant among treatments, Bd decreased 6.7% for CT, 5.6% for NT and 0.7% for VT. P increased 6% for CT, 5% for NT and 0.5% for VT. Ks for CT decreased 6% more than for NT and VT. Average yield was 13% less in NT compared to CT and VT. A long-term investigation is needed in order to determine the effects of tillage methods, in our particular environmental conditions.


Soil Systems ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 38
Author(s):  
Dinesh Panday ◽  
Nsalambi V. Nkongolo

Assessment of the effects of crop management practices on soil physical properties is largely limited to soil moisture content, air content or bulk density, which can take considerable time to change. However, soil pore space indices evolve rapidly and could quickly detect changes in soil properties resulting from crop management practices, but they are not often measured. The objective of this study was to investigate how soil pore space indices—relative gas diffusion coefficient (Ds/Do) and pore tortuosity factor (τ)—are affected by tillage system (TL), cover crop (CC) and crop rotation (CR). A study was conducted on silt loam soil at Freeman farm, Lincoln University of Missouri during the 2011 to 2013 growing seasons. The experiment design was a randomized complete block with two tillage systems (no tillage or no-till vs conventional tillage), two cover crops (no rye vs cereal rye (Secale cereale L.)) and four crop rotations (continuous corn (Zea mays L.), continuous soybean (Glycine max L.), corn–soybean and soybean–corn successions). All the treatments were replicated three times for a total of 48 experimental units. Soils were collected from two sampling depths (SD), 0–10 and 10–20 cm, in each treatment and soil physical properties, including bulk density (BD), air-filled porosity (AFP, fa) and total pore space (TPS, Φ), were calculated. Gas diffusivity models following AFP and/or TPS were used to predict Ds/Do and τ values. Results showed that, overall, Ds/Do was significantly increased in no-tilled plots planted to cereal rye in 2012 (p = 0.001) and in 2013 (p = 0.05). No-tilled continuous corn, followed by continuous soybean and no-tilled soybean–corn rotations had the highest Ds/Do values, respectively. In magnitude, Ds/Do was also increased in no-till plots at the lower depth (10–20 cm). No-tilled plots planted with cereal rye significantly reduced τ in 2012 (p = 0.001) and in 2013 (p = 0.05). Finally, at the upper depth (0–10 cm), the no-tilled corn–soybean rotation and the tilled soybean–corn rotation had the lowest τ. However, at the lower depth (10–20 cm), the four crop rotations were not significantly different in their τ values. These results can be useful to quickly assess the changes in soil physical properties because of crop management practices and make necessary changes to enhance agricultural resilience.


Sign in / Sign up

Export Citation Format

Share Document