scholarly journals Changes in Physical Properties Especially, Three Phases, Bulk Density, Porosity and Correlations under No-tillage Clay Loam Soil with Ridge Cultivation of Rain Proof Plastic House

2014 ◽  
Vol 47 (4) ◽  
pp. 225-234 ◽  
Author(s):  
Seung-Koo Yang ◽  
Youn-Won Seo ◽  
Sun-Kook Kim ◽  
Byeong-Ho Kim ◽  
Hee-Kwon Kim ◽  
...  
1998 ◽  
Vol 78 (2) ◽  
pp. 345-350 ◽  
Author(s):  
A. M Hammermeister ◽  
D. S. Chanasyk ◽  
M. A. Naeth

It has been suggested that fly ash, when applied as a soil amendment, would increase soil temperature. However, no quantitative data have been provided to support this hypothesis. This hypothesis was tested on four fly ash treatments (0, 100, 200, and 400 t ha−1) applied to clay loam soil in a randomized block design. Bi-hourly soil temperatures were measured on 3 summer days over 2 yr, and afternoon temperatures were measured on randomly selected spring days at 5-, 10-, and 20-cm depths in the four fly ash treatments. Temperatures were measured in conjunction with surface bulk density, water content, and particle size distribution which were also used to calculate thermal heat capacity. Fly ash decreased percent clay, soil water content, and soil heat capacity. Contrary to previously expected trends, fly ash amendment did not significantly increase mean daily soil temperature under dry conditions. Generalizations in the literature regarding the influence of fly ash on soil temperature, bulk density, and water-holding capacity must be considered carefully since they generally relate only to coarse to medium textured soils. Key words: Soil amendments, bulk density, reclamation, heat capacity, thermal diffusivity, thermal conductivity, volumetric water content, particle size distribution


1972 ◽  
Vol 52 (3) ◽  
pp. 477-483 ◽  
Author(s):  
H. F. MIRREH ◽  
J. W. KETCHESON

Cylinders of a clay loam soil were adjusted to different bulk density and matric pressure combinations to study soil resistance to a penetrating probe. Regression analysis of the penetrometer data produced no evidence to reject a regression model of the form Y = β0X0 + β1X1 + β2X2 + β3X12 + β4X22 + β5X1X2 (where Y = penetrometer resistance, X1 = bulk density, X2 = matric pressure). A three-dimensional plot of the generated soil resistance values was constructed to illustrate the nature of the interaction. At any one bulk density in the range 1.0–1.5 g/cc, soil resistance values tended to pass through a maximum as soil moisture was removed over the matric pressure range 1.0–8.0 atm. The tendency was most pronounced at the lower bulk densities. Implications on root growth and soil management are briefly discussed.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Samuel I. Haruna ◽  
Nsalambi V. Nkongolo

We assessed the spatial variability of soil physical properties in a clay-loam soil cropped to corn and soybean. The study was conducted at Lincoln University in Jefferson City, Missouri. Soil samples were taken at four depths: 0–10 cm, 10–20, 20–40, and 40–60 cm and were oven dried at 105°C for 72 hours. Bulk density (BDY), volumetric (VWC) and gravimetric (GWC) water contents, volumetric air content (VAC), total pore space (TPS), air-filled (AFPS) and water-filled (WFPS) pore space, the relative gas diffusion coefficient (DIFF), and the pore tortuosity factor (TORT) were calculated. Results showed that, in comparison to depth 1, means for AFPS, Diff, TPS, and VAC decreased in Depth 2. Opposingly, BDY, Tort, VWC, and WFPS increased in depth 2. Semivariogram analysis showed that GWC, VWC, BDY, and TPS in depth 2 fitted to an exponential variogram model. The range of spatial variability (A0) for BDY, TPS, VAC, WFPS, AFPS, DIFF, and TORT was the same (25.77 m) in depths 1 and 4, suggesting that these soil properties can be sampled together at the same distance. The analysis also showed the presence of a strong (≤25%) to weak (>75%) spatial dependence for soil physical properties.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 489
Author(s):  
Angela Libutti ◽  
Matteo Francavilla ◽  
Massimo Monteleone

Improving soil-water relations by amending soil with biochar might play a significant role in increasing water availability for agricultural crops as well as decreasing water loss through drainage or runoff. While the effects of biochar on the hydrological properties on coarse-textured soils are generally positive and well-documented in the literature, studies on biochar effects on fine-textured soils are rather scarce and even contradictory. Therefore, the aim of this paper was to investigate the impact of biochar on the bulk density, water retention curve (together with several water capacitive indicators) and water infiltration rate in a clay loam soil. A pot experiment was carried out under lab conditions in which biochar was mixed with soil at rates of 0 (B0 or control), 2, 4, 6, 8 and 10% dw (B2, B4, B6, B8 and B10, respectively). Water retention of soil–biochar mixtures at different matrix potentials was determined using a pressure plate apparatus. From these measurements, a series of capacitive indicators was derived and the fitting of the van Genuchten model was also performed. Water infiltration into soil–biochar mixtures was measured by means of a mini-disk infiltrometer and the obtained data were analyzed both directly and by fitting the Philip’s model. Biochar significantly affected the considered soil properties. As the biochar rate increased, the bulk density decreased and water retention increased (B6, B8 and B10 > B2, B4 and B0), while the infiltration rate decreased (B0 > B2, B4, B6, B8 and B10). Although the experiment was performed on sieved and repacked soil samples under lab conditions, the results confirmed that biochar has the potential to increase plant-available water, while possibly reducing drainage water in a clay loam soil by lowering the infiltration rate.


2019 ◽  
Vol 99 (4) ◽  
pp. 575-578 ◽  
Author(s):  
J.J. Miller ◽  
M.L. Owen ◽  
X.M. Yang ◽  
C.F. Drury ◽  
W.D. Reynolds ◽  
...  

A 21 yr field study comparing zone tillage (ZT), no-tillage (NT), and moldboard plow tillage (MP) was used to elucidate tillage effects on soil hydrophobicity (SH) and soil water repellency index (RI) in a cool, humid clay loam soil in southwestern Ontario. The SH was 38% (P ≤ 0.05) greater for ZT and NT than MP, and it was similar between crop row (0.34) and crop inter-row (0.37) for ZT. The RI values were not different among tillage systems, or between the crop row versus crop inter-row positions under the three tillage systems.


Sign in / Sign up

Export Citation Format

Share Document