An Experimental Investigation of the Effect of Fracture Dip Angle on Oil Recovery and Drainage Rate in Free Fall Gravity Drainage in Fractured Reservoirs Using a Glass Micromodel (A Pore Level Investigation)

2013 ◽  
Vol 31 (4) ◽  
pp. 355-367 ◽  
Author(s):  
N. Zareh ◽  
R. Kharrat ◽  
M. Ghazanfari
2012 ◽  
Author(s):  
Adel Mohsenzadeh ◽  
Mehdi Escrochi ◽  
Mohammad Vahid Afraz ◽  
Yahya Mansoor Al-wahaibi ◽  
Shahab Ayatollahi

SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 973-987 ◽  
Author(s):  
Neha Anand ◽  
Brandon Tang ◽  
Bradley (Duong) Nguyen ◽  
Chao-yu Sie ◽  
Marco Verlaan ◽  
...  

Summary Application of thermal and solvent enhanced-oil-recovery (EOR) technologies for viscous heavy-oil recovery in naturally fractured reservoirs is generally challenging because of low permeability, unfavorable wettability and mobility, and considerable heat losses. Vapor/oil gravity drainage (VOGD) is a modified solvent-only injection technology, targeted at improving viscous oil recovery in fractured reservoirs. It uses high fluid conductivity in vertical fractures to rapidly establish a large solvent/oil contact area and eliminates the need for massive energy and water inputs, compared with thermal processes, by operating at significantly lower temperatures with no water requirement. An investigation of the effects of solvent-injection rate, temperature, and solvent type [n-butane and dichloromethane (DCM)] on the recovery profile was performed on a single-fracture core model. This work combines the knowledge obtained from experimental investigation and analytical modeling using the Butler correlation (Das and Butler 1999) with validated fluid-property models to understand the relative importance of various recovery mechanisms behind VOGD—namely, molecular diffusion, asphaltene precipitation and deposition, capillarity, and viscosity reduction. Experimental and analytical model studies indicated that molecular diffusion, convective dispersion, viscosity reduction by means of solvent dissolution, and gravity drainage are dominant phenomena in the recovery process. Material-balance analysis indicated limited asphaltene precipitation. High fluid transmissibility in the fracture along with gravity drainage led to early solvent breakthroughs and oil recoveries as high as 75% of original oil in place (OOIP). Injecting butane at a higher rate and operating temperature enhanced the solvent-vapor rate inside the core, leading to the highest ultimate recovery. Increasing the operating temperature alone did not improve ultimate recovery because of decreased solvent solubility in the oil. Although with DCM, lower asphaltene precipitation should maximize the oil-recovery rate, its higher solvent (vapor)/oil interfacial tension (IFT) resulted in lower ultimate recovery than butane. Ideal density and nonideal double-log viscosity-mixing rules along with molecular diffusivity as a power function of oil viscosity were used to obtain an accurate physical description of the fluids for modeling solvent/oil behavior. With critical phenomena such as capillarity and asphaltene precipitation missing, the Butler analytical model underpredicts recovery rates by as much as 70%.


Author(s):  
Hamidreza Erfani ◽  
Abtin Karimi Malekabadi ◽  
Mohammad Hossein Ghazanfari ◽  
Behzad Rostami

AbstractGravity drainage is known as the controlling mechanism of oil recovery in naturally fractured reservoirs. The efficiency of this mechanism is controlled by block-to-block interactions through capillary continuity and/or reinfiltration processes. In this study, at first, several free-fall gravity drainage experiments were conducted on a well-designed three-block apparatus and the role of tilt angle, spacers’ permeability, wettability and effective contact area (representing a different status of the block-to-block interactions between matrix blocks) on the recovery efficiency were investigated. Then, an experimental-based numerical model of free-fall gravity drainage process was developed, validated and used for monitoring the saturation profiles along with the matrix blocks. Results showed that gas wetting condition of horizontal fracture weakens the capillary continuity and in consequence decreases the recovery factor in comparison with the original liquid wetting condition. Moreover, higher spacers’ permeability increases oil recovery at early times, while it decreases the ultimate recovery factor. Tilt angle from the vertical axis decreases recovery factor, due to greater connectivity of matrix blocks to vertical fracture and consequent channelling. Decreasing horizontal fracture aperture decreases recovery at early times but increases the ultimate recovery due to a greater extent of capillary continuity between the adjacent blocks. Well match observed between the numerical model results and the experimental data of oil recovery makes the COMSOL multiphysics model attractive for application in multi-blocks fractured systems considering block-to-block interactions. The findings of this research improve our understanding of the role of different fracture properties on the block-to-block interactions and how they change the ultimate recovery of a multi-block system.


2014 ◽  
Vol 5 (1) ◽  
pp. 205-222
Author(s):  
Hamed Hematpur ◽  
Mohammad Parvaz Davani ◽  
Mohsen Safari

Lack of experimental study on the recovery of solvent flooding in low viscosity oil is obvious in previous works. This study concerns the experimental investigation on oil recovery efficiency during solvent/co-solvent flooding in low viscosity oil sample from an Iranian reservoir. Two micromodel patterns with triangular and hexagonal pore structures were designed and used in the experiments. A series of solvent flooding experiments were conducted on the two patterns that were initially saturated with crude oil sample. The oil recovery efficiency as a function injected pore volume was determined from analysis of continuously captured pictures. Condensate and n-hexane were employed as base solvents, and Methyl Ethyl Ketone (MEK) and Ethylene Glycol Mono Butyl Ether (EGMBE) used as co-solvents. The results revealed that not only does the solvent flooding increase the recovery in low viscosity oil but also this increase is evidently higher with respect to viscous oil. But, type of solvent or adding co-solvent to solvent does not noticeably increase the recovery of low viscosity oil. In addition, further experiments showed that presence of connate water or increasing injection rate reduces the recovery whereas increasing permeability improves the recovery. The results of this study are helpful to better understand the application of solvent flooding in low viscosity oil reservoirs.


2020 ◽  
Vol 47 (4) ◽  
pp. 836-845
Author(s):  
Xiaolong CHEN ◽  
Yiqiang LI ◽  
Guangzhi LIAO ◽  
Chengming ZHANG ◽  
Shanzhi XU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document