The Application of Artificial Neural Networks in Determination of Bubble Point Pressure for Iranian Crude Oils

2013 ◽  
Vol 31 (23) ◽  
pp. 2475-2482 ◽  
Author(s):  
J. Moghadasi ◽  
K. Kazemi ◽  
S. Moradi
2020 ◽  
Vol 11 (01) ◽  
pp. 1445-1454
Author(s):  
Uduma U. Idika

A model was developed to predict the bubble point pressure of saturated reservoirs. The model was based on artificial neural networks and was developed using 700 generic data sets which are representative of the Niger Delta region of Nigeria. The data set was first cleaned to remove erroneous and repeated data points. After cleaning, 618 data points were remaining. Of the 618 data points, 463 were used to train the ANN model, 93 were used to cross-validate the relationships established during the training process and the remaining 62 were used to test the model to evaluate its accuracy. A backward propagation network utilizing the LM algorithm was used in developing the model. The first layer consisted of four neurons representing the input values of reservoir temperature, API oil gravity, gas specific gravity, and solution GOR. The second (hidden) layer consisted of 26 neurons, and the third layer contained one neuron representing the output value of the bubble point pressure. The results showed that the developed model provides better predictions and higher accuracy than the existing empirical correlations considered when exposed to an additional 13 data points which were unseen by the model during its development. The model provided predictions of the bubble point pressure with an absolute average percent error of 3.98%, RMSE of 177.6479 and correlation coefficient of 0.9851. Trend analysis was performed to check the behavior of the predicted values of P_b for any change in reservoir temperature, oil API gravity, gas gravity and solution GOR. The model was found to be physically correct. Its stability indicated that it did not overfit the data, implying that it was successfully trained.


2021 ◽  
Vol 184 ◽  
pp. 106096
Author(s):  
Mailson Freire de Oliveira ◽  
Adão Felipe dos Santos ◽  
Elizabeth Haruna Kazama ◽  
Glauco de Souza Rolim ◽  
Rouverson Pereira da Silva

Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Rahel Jedamski ◽  
Jérémy Epp

Non-destructive determination of workpiece properties after heat treatment is of great interest in the context of quality control in production but also for prevention of damage in subsequent grinding process. Micromagnetic methods offer good possibilities, but must first be calibrated with reference analyses on known states. This work compares the accuracy and reliability of different calibration methods for non-destructive evaluation of carburizing depth and surface hardness of carburized steel. Linear regression analysis is used in comparison with new methods based on artificial neural networks. The comparison shows a slight advantage of neural network method and potential for further optimization of both approaches. The quality of the results can be influenced, among others, by the number of teaching steps for the neural network, whereas more teaching steps does not always lead to an improvement of accuracy for conditions not included in the initial calibration.


2020 ◽  
Vol 12 (1) ◽  
pp. 718-725
Author(s):  
Maria Mrówczyńska ◽  
Jacek Sztubecki ◽  
Małgorzata Sztubecka ◽  
Izabela Skrzypczak

Abstract Objects’ measurements often boil down to the determination of changes due to external factors affecting on their structure. The estimation of changes in a tested object, in addition to proper measuring equipment, requires the use of appropriate measuring methods and experimental data result processing methods. This study presents a statement of results of geometrical measurements of a steel cylinder that constitutes the main structural component of the historical weir Czersko Polskie in Bydgoszcz. In the initial stage, the estimation of reliable changes taking place in the cylinder structure involved the selection of measuring points essential for mapping its geometry. Due to the continuous operation of the weir, the points covered only about one-third of the cylinder area. The set of points allowed us to determine the position of the cylinder axis as well as skews and deformations of the cylinder surface. In the next stage, the use of methods based on artificial neural networks allowed us to predict the changes in the tested object. Artificial neural networks have proved to be useful in determining displacements of building structures, particularly hydro-technical objects. The above-mentioned methods supplement classical measurements that create the opportunity for carrying out additional analyses of changes in a spatial position of such structures. The purpose of the tests is to confirm the suitability of artificial neural networks for predicting displacements of building structures, particularly hydro-technical objects.


Sign in / Sign up

Export Citation Format

Share Document