An improved hydrocarbon generating model of source rocks and its application: a case study of shale oil in-situ transformation of the Yanchang Formation in the Ordos Basin

Author(s):  
Qiulin Guo ◽  
Xiaoming Chen ◽  
Jian Wang ◽  
Ningsheng Chen ◽  
Xiaozhi Wu
2020 ◽  
Author(s):  
Jiyuan You ◽  
Yiqun Liu ◽  
Dingwu Zhou

<p>The "black chimney" type of hydrothermal vents in the modern deep sea have become a popular research topic in many disciplines. Due to the actual conditions, the research on palaeo-thermal vents in geological history is relatively low. Fortunately, the discovery of hydrothermal vents and bio-fossils from the Chang 7 source rocks of the Yanchang Formation of the Triassic in the Ordos Basin, China, provides the best evidence for deciphering hydrothermal activity during geological history. Here, we report a case study. Through ordinary sheet observation, scanning electron microscopy and electron probe observation, layered grained siliceous rocks, dolomites, and hydrothermal mineral combinations, such as pyrite + dolomite + gypsum and calcite + barite, are found. Their unique petrological characteristics, mineral composition, and structure confirm the existence of palaeo-thermal fluid vents. We further analysed the geochemical characteristics and in situ isotope characteristics. The study found that Cs, U, Th, Pb, Ba and other trace elements of the sample showed positive abnormalities, in which values of U/Th were high; in addition, the enrichment of major elements such as Sr, Mn, and the in situ sulphur isotopes of pyrite reached 7.89%-10.88%. This study of hydrothermal vents over geological history is expected to provide new insights on the life forms of various extreme microorganisms in hydrothermal environments and on their formation of high-quality source rocks.</p>


2021 ◽  
Author(s):  
Jiyuan You ◽  
Yiqun Liu ◽  
Dingwu Zhou ◽  
Yiyao Yang

Abstract Because few well-preserved hydrothermal channels have been found in terrestrial sedimentary rocks, research on LTHA in geological history is relatively sparse. In this study, we present our original discovery of “hydrothermal channels” from the Chang 7 source rocks of the Triassic Yanchang Formation in the Ordos Basin, China, and provide the best evidence for deciphering LTHA preserved in the geological record (i.e., sedimentary rocks). Three possible LTHA samples (i.e., samples 1551.6, 1551.6-2 and 1574.4) were collected for this study; they were interbedded with mudstones and oil shales, indicative of a deep-lake sedimentary environment. All three samples consist mainly of anhydrite, pyrite, and dolomite with the formation of mineral zoning across the walls of these structures, suggesting a sulfate-dominated stage and a carbonate-sulfide replacement stage. Moreover, their in situ geochemistry is characterized by high Eu, U, Th, Sr, Mn and U/Th ratios, which are typical indicators of hydrothermal vents. In addition, their S isotopes range from 7.89% to 10.88%, the magmatic sulfur accounted for approximately 94.3%, implying a possible magmatic trigger for these hydrothermal channels. All this evidence shows that the Triassic sedimentary rocks of the Ordos Basin probably contain LTHA. Comparing ancient LTHA to modern hydrothermal chimneys, we should note the important implications of LTHA; their formation mechanism may have been related to oil production, and they are possible indicators for future oil investigations. Further, they have great significance for studying the hydrothermal properties of primary dolomite.


2017 ◽  
Vol 5 (2) ◽  
pp. SF81-SF98
Author(s):  
Jing Wang ◽  
Xiangbo Li ◽  
Huaqing Liu ◽  
Xiuqin Deng ◽  
Rong Wanyan

The Ordos Basin has abundant conventional and unconventional oil and gas resources. Focusing on shale oil in the Ordos Basin, we studied the distribution, depositional features, and resource potential of shales in the upper Triassic Yanchang Formation based on the Ordos Basin development and depocenter migration. During the late Triassic, the Ordos Basin was a large cratonic sedimentary basin that bordered to the Hexi Corridor to the west, the southern North China block to the east, the Qilian and western Qinling orogenic zone to the south, and the foot of the Yin Mountains to the north. During deposition of the Yanchang Formation, its depocenter was not fixed. It migrated to the west before deposition of the Chang 7 oil layer and to the south after deposition of the Chang 7 oil layer. Controlled by the depocenter migration and relevant deep-lake facies, the Yanchang Formation mainly developed two sets of source rocks. The dark mudstone and shale in the Chang 9 oil layer is chiefly distributed in the south-central region of the basin, with thicknesses of 4–16 m and covers an area of approximately [Formula: see text]. The shales in the Chang 7 oil layer can be divided into two types, black oil shale and dark mudstone, and they are much thicker and more widespread than the dark mudstone in the Chang 9 oil layer. The black shale alone can be up to 60 m thick, and covers an area of more than [Formula: see text]. The shales in the Chang 7 and 9 oil layers were mainly formed in a deep-lake environment that produced high concentrations of organic matter and large hydrocarbon generation potential. According to preliminary estimates, the Chang 7 oil shale may contain [Formula: see text] of oil, thereby representing a huge resource potential with broad exploration prospectivity.


Sign in / Sign up

Export Citation Format

Share Document