CFD modeling of virtual mass force and pressure gradient force on deposition rate of asphaltene aggregates in oil wells

Author(s):  
Xiaodong Gao ◽  
Pingchuan Dong ◽  
Xiaoxi Chen ◽  
Luc Yvan Nkok ◽  
Shaowei Zhang ◽  
...  
2019 ◽  
Author(s):  
Étienne Vignon ◽  
Olivier Traullé ◽  
Alexis Berne

Abstract. Eight years of high-resolution radiosonde data at nine Antarctic stations are analysed to provide the first large scale characterization of the fine scale vertical structure of the low troposphere up to 3 km of altitude over the coastal margins of East Antarctica. Radiosonde data show a large spatial variability of wind, temperature and humidity profiles, with different features between stations in katabatic regions (e.g., Dumont d'Urville and Mawson stations), stations over two ice shelves (Neumayer and Halley stations) and regions with complex orography (e.g., Mc Murdo). At Dumont d'Urville, Mawson and Davis stations, the yearly median wind speed profiles exhibit a clear low-level katabatic jet. During precipitation events, the low-level flow generally remains of continental origin and its speed is even reinforced due to the increase in the continent- ocean pressure gradient. Meanwhile, the relative humidity profiles show a dry low troposphere, suggesting the occurence of low-level sublimation of precipitation in katabatic regions but such a phenomenon does not appreciably occur over the ice-shelves near Halley and Neumayer. Although ERA-Interim and ERA5 reanalyses assimilate radiosoundings at most stations considered here, substantial – and sometimes large – low-level wind and humidity biases are revealed but ERA5 shows overall better performances. A free simulation with the regional model Polar WRF (at a 35-km resolution) over the entire continent shows too strong and too shallow near-surface jets in katabatic regions especially in winter. This may be a consequence of an understimated coastal cold air bump and associated sea-continent pressure gradient force due to the coarse 35 km resolution of the Polar WRF simulation. Beyond documenting the vertical structure of the low troposphere over coastal East-Antarctica, this study gives insights into the reliability and accuracy of two major reanalysis products in this region on the Earth and it raises the difficulty of modeling the low-level flow over the margins of the ice sheet with a state-of-the-art climate model.


2013 ◽  
Vol 70 (2) ◽  
pp. 583-599 ◽  
Author(s):  
Wenchang Yang ◽  
Richard Seager ◽  
Mark A. Cane

Abstract In this paper, zonal momentum balances of the tropical atmospheric circulation during the global monsoon mature months (January and July) are analyzed in three dimensions based on the ECMWF Interim Re-Analysis (ERA-Interim). It is found that the dominant terms in the balance of the atmospheric boundary layer (ABL) in both months are the pressure gradient force, the Coriolis force, and friction. The nonlinear advection term plays a significant role only in the Asian summer monsoon regions within the ABL. In the upper troposphere, the pressure gradient force, the Coriolis force, and the nonlinear advection are the dominant terms. The transient eddy force and the residual force (which can be explained as convective momentum transfer over open oceans) are secondary, yet cannot be neglected near the equator. Zonal-mean equatorial upper-troposphere easterlies are maintained by the absolute angular momentum advection associated with the cross-equatorial Hadley circulation. Equatorial upper-troposphere easterlies over the Asian monsoon regions are also controlled by the absolute angular momentum advection but are mainly maintained by the pressure gradient force in January. The equivalent linear Rayleigh friction, which is widely applied in simple tropical models, is calculated and the corresponding spatial distribution of the local coefficient and damping time scale are estimated from the linear regression. It is found that the linear momentum model is in general capable of crudely describing the tropical atmospheric circulation dynamics, yet the caveat should be kept in mind that the friction coefficient is not uniformly distributed and is even negative in some regions.


1998 ◽  
Vol 188 ◽  
pp. 419-420
Author(s):  
T. Miwa ◽  
Y. Watanabe ◽  
J. Fukue

We examined an accretion-disk corona around a black hole immersed in the disk radiation fields (cf. Watanabe, Fukue 1996a, b). The corona is supposed to be initially at rest far from the center. During infall above and below the disk, the corona is suffered from the disk radiation fields. As a disk model, we adopted the standard α-disk, and in order to mimic the general relativisitic effects, we use the pseudo-Newtonian force proposed by Artemova et al. (1996). Moreover, we assume that the corona is geometrically thin and optically thin, and ignored any motion such as wind. We consider the cold case, where the pressure-gradient force is ignored. Under these assumptions, we calculated the motion of the corona gas and found that the infall of corona is supressed due to disk radiation fields.


Sign in / Sign up

Export Citation Format

Share Document