scholarly journals On the fine vertical structure of the low troposphere over the coastal margins of East Antarctica

2019 ◽  
Author(s):  
Étienne Vignon ◽  
Olivier Traullé ◽  
Alexis Berne

Abstract. Eight years of high-resolution radiosonde data at nine Antarctic stations are analysed to provide the first large scale characterization of the fine scale vertical structure of the low troposphere up to 3 km of altitude over the coastal margins of East Antarctica. Radiosonde data show a large spatial variability of wind, temperature and humidity profiles, with different features between stations in katabatic regions (e.g., Dumont d'Urville and Mawson stations), stations over two ice shelves (Neumayer and Halley stations) and regions with complex orography (e.g., Mc Murdo). At Dumont d'Urville, Mawson and Davis stations, the yearly median wind speed profiles exhibit a clear low-level katabatic jet. During precipitation events, the low-level flow generally remains of continental origin and its speed is even reinforced due to the increase in the continent- ocean pressure gradient. Meanwhile, the relative humidity profiles show a dry low troposphere, suggesting the occurence of low-level sublimation of precipitation in katabatic regions but such a phenomenon does not appreciably occur over the ice-shelves near Halley and Neumayer. Although ERA-Interim and ERA5 reanalyses assimilate radiosoundings at most stations considered here, substantial – and sometimes large – low-level wind and humidity biases are revealed but ERA5 shows overall better performances. A free simulation with the regional model Polar WRF (at a 35-km resolution) over the entire continent shows too strong and too shallow near-surface jets in katabatic regions especially in winter. This may be a consequence of an understimated coastal cold air bump and associated sea-continent pressure gradient force due to the coarse 35 km resolution of the Polar WRF simulation. Beyond documenting the vertical structure of the low troposphere over coastal East-Antarctica, this study gives insights into the reliability and accuracy of two major reanalysis products in this region on the Earth and it raises the difficulty of modeling the low-level flow over the margins of the ice sheet with a state-of-the-art climate model.

2019 ◽  
Vol 19 (7) ◽  
pp. 4659-4683 ◽  
Author(s):  
Étienne Vignon ◽  
Olivier Traullé ◽  
Alexis Berne

Abstract. In this study, 8 years of high-resolution radiosonde data at nine Antarctic stations are analysed to provide the first large-scale characterization of the fine vertical structure of the low troposphere up to 3 km altitude over the coastal margins of East Antarctica. Radiosonde data show a large spatial variability of wind, temperature and humidity profiles, with different features between stations in katabatic regions (e.g., Dumont d'Urville and Mawson stations), stations over two ice shelves (Neumayer and Halley stations) and regions with complex orography (e.g., McMurdo). At the Dumont d'Urville, Mawson and Davis stations, the yearly median wind speed profiles exhibit a clear low-level katabatic jet. During precipitation events, the low-level flow generally remains of continental origin and its speed is even reinforced due to the increase in the continent–ocean pressure gradient. Meanwhile, the relative humidity profiles show a dry low troposphere, suggesting the occurrence of low-level sublimation of precipitation in katabatic regions but such a phenomenon does not appreciably occur over the ice shelves near Halley and Neumayer. Although ERA-Interim and ERA5 reanalyses assimilate radiosoundings at most stations considered here, substantial – and sometimes large – low-level wind and humidity biases are revealed but ERA5 shows overall better performance. A free simulation with the regional polar version of the Weather Research and Forecasting model (Polar WRF) (at a 35 km resolution) over the entire continent shows too-strong and too-shallow near-surface jets in katabatic regions especially in winter. This may be a consequence of an underestimated coastal cold air bump and associated sea–continent pressure gradient force due to the coarse 35 km resolution of the Polar WRF simulation. Beyond documenting the vertical structure of the low troposphere over coastal East Antarctica, this study gives insights into the reliability and accuracy of two major reanalysis products in this region on the Earth. The paper further underlines the difficulty of modeling the low-level flow over the margins of the ice sheet with a state-of-the-art atmospheric model.


2020 ◽  
Vol 148 (11) ◽  
pp. 4641-4656
Author(s):  
Thomas R. Parish ◽  
Richard D. Clark ◽  
Todd D. Sikora

AbstractThe Great Plains low-level jet (LLJ) has long been associated with summertime nocturnal convection over the central Great Plains of the United States. Destabilization effects of the LLJ are examined using composite fields assembled from the North American Mesoscale Forecast System for June and July 2008–12. Of critical importance are the large isobaric temperature gradients that become established throughout the lowest 3 km of the atmosphere in response to the seasonal heating of the sloping Great Plains. Such temperature gradients provide thermal wind forcing throughout the lower atmosphere, resulting in the establishment of a background horizontal pressure gradient force at the level of the LLJ. The attendant background geostrophic wind is an essential ingredient for the development of a pronounced summertime LLJ. Inertial turning of the ageostrophic wind associated with LLJ provides a westerly wind component directed normal to the terrain-induced orientation of the isotherms. Hence, significant nocturnal low-level warm-air advection occurs, which promotes differential temperature advection within a vertical column of atmosphere between the level just above the LLJ and 500 hPa. Such differential temperature advection destabilizes the nighttime troposphere above the radiatively cooled near-surface layer on a recurring basis during warm weather months over much of the Great Plains and adjacent states to the east. This destabilization process reduces the convective inhibition of air parcels near the level of the LLJ and may be of significance in the development of elevated nocturnal convection. The 5 July 2015 case from the Plains Elevated Convection at Night field program is used to demonstrate this destabilization process.


2012 ◽  
Vol 140 (6) ◽  
pp. 1779-1793 ◽  
Author(s):  
Teruhisa Shimada ◽  
Masahiro Sawada ◽  
Weiming Sha ◽  
Hiroshi Kawamura

Abstract This paper investigates the structures of and diurnal variations in low-level easterly winds blowing through the Tsugaru Strait and Mutsu Bay on 5–10 June 2003 using a numerical weather prediction model. Cool air that accompanies prevailing easterly winds owing to the persistence of the Okhotsk high intrudes into the strait and the bay below 500 m during the nighttime and retreats during the daytime. This cool-air intrusion and retreat induce diurnal variations in the winds in the east inlet of the strait, in Mutsu Bay, and in the west exit of the strait. In the east inlet, a daytime increase in air temperature within the strait produces a large air temperature difference with the inflowing cool air, and the resulting pressure gradient force accelerates the winds. The cool air flowing into Mutsu Bay is heated over land before entering the bay during the daytime. The resulting changes in cool-air depth and in pressure gradient force strengthen the daytime winds. In the west exit, local pressure gradient force perturbations are induced by the air temperature difference between warm air over the Japan Sea and cool air within the strait, and by variations in the depth of low-level cool air. The accelerated winds in the west exit extend southwestward in close to geostrophic balance during the daytime and undergo a slight anticyclonic rotation to westerly during the nighttime owing to the dominance of the Coriolis effect.


2012 ◽  
Vol 69 (4) ◽  
pp. 1232-1249 ◽  
Author(s):  
Danhong Fu ◽  
Xueliang Guo

Abstract The cloud-resolving fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5) was used to study the cloud interactions and merging processes in the real case that generated a mesoscale convective system (MCS) on 23 August 2001 in the Beijing region. The merging processes can be grouped into three classes for the studied case: isolated nonprecipitating and precipitating cell merging, cloud cluster merging, and echo core or updraft core merging within cloud systems. The mechanisms responsible for the multiscale merging processes were investigated. The merging process between nonprecipitating cells and precipitating cells and that between clusters is initiated by forming an upper-level cloud bridge between two adjacent clouds due to upper-level radial outflows in one vigorous cloud. The cloud bridge is further enhanced by a favorable middle- and upper-level pressure gradient force directed from one cloud to its adjacent cloud by accelerating cloud particles being horizontally transported from the cloud to its adjacent cloud and induce the redistribution of condensational heating, which destabilizes the air at and below the cloud bridge and forms a favorable low-level pressure structure for low-level water vapor convergence and merging process. The merging of echo cores within the mesoscale cloud happens because of the interactions between low-level cold outflows associated with the downdrafts formed by these cores. Further sensitivity studies on the effects of topography and large-scale environmental winds suggest that the favorable pressure gradient force from one cloud to its adjacent cloud and stronger low-level water vapor convergence produced by the topographic lifting of large-scale low-level airflow determine further cloud merging processes over the mountain region.


2017 ◽  
Vol 74 (9) ◽  
pp. 3055-3077 ◽  
Author(s):  
Brett Roberts ◽  
Ming Xue

Abstract The idealized supercell simulations in a previous study by Roberts et al. are further analyzed to clarify the physical mechanisms leading to differences in mesocyclone intensification between an experiment with surface friction applied to the full wind (FWFRIC) and an experiment with friction applied to the environmental wind only (EnvFRIC). The low-level mesocyclone intensifies rapidly during the 3 min preceding tornadogenesis in FWFRIC, while the intensification during the same period is much weaker in EnvFRIC, which fails to produce a tornado. To quantify the mechanisms responsible for this discrepancy in mesocyclone evolution, material circuits enclosing the low-level mesocyclone are initialized and traced back in time, and circulation budgets for these circuits are analyzed. The results show that in FWFRIC, surface drag directly generates a substantial proportion of the final circulation around the mesocyclone, especially below 1 km AGL; in EnvFRIC, circulation budgets indicate the mesocyclone circulation is overwhelmingly barotropic. It is proposed that the import of near-ground, frictionally generated vorticity into the low-level mesocyclone in FWFRIC is a key factor causing the intensification and lowering of the mesocyclone toward the ground, creating a large upward vertical pressure gradient force that leads to tornadogenesis. Similar circulation analyses are also performed for circuits enclosing the tornado at its genesis stage. The frictionally generated circulation component is found to contribute more than half of the final circulation for circuits enclosing the tornado vortex below 400 m AGL, and the frictional contribution decreases monotonically with the height of the final circuit.


2014 ◽  
Vol 142 (8) ◽  
pp. 2935-2960 ◽  
Author(s):  
Patrick S. Skinner ◽  
Christopher C. Weiss ◽  
Michael M. French ◽  
Howard B. Bluestein ◽  
Paul M. Markowski ◽  
...  

Abstract Observations collected in the second Verification of the Origins of Rotation in Tornadoes Experiment during a 15-min period of a supercell occurring on 18 May 2010 near Dumas, Texas, are presented. The primary data collection platforms include two Ka-band mobile Doppler radars, which collected a near-surface, short-baseline dual-Doppler dataset within the rear-flank outflow of the Dumas supercell; an X-band, phased-array mobile Doppler radar, which collected volumetric single-Doppler data with high temporal resolution; and in situ thermodynamic and wind observations of a six-probe mobile mesonet. Rapid evolution of the Dumas supercell was observed, including the development and decay of a low-level mesocyclone and four internal rear-flank downdraft (RFD) momentum surges. Intensification and upward growth of the low-level mesocyclone were observed during periods when the midlevel mesocyclone was minimally displaced from the low-level circulation, suggesting an upward-directed perturbation pressure gradient force aided in the intensification of low-level rotation. The final three internal RFD momentum surges evolved in a manner consistent with the expected behavior of a dynamically forced occlusion downdraft, developing at the periphery of the low-level mesocyclone during periods when values of low-level cyclonic azimuthal wind shear exceeded values higher aloft. Failure of the low-level mesocyclone to acquire significant vertical depth suggests that dynamic forcing above internal RFD momentum surge gust fronts was insufficient to lift the negatively buoyant air parcels comprising the RFD surges to significant heights. As a result, vertical acceleration and the stretching of vertical vorticity in surge parcels were limited, which likely contributed to tornadogenesis failure.


2016 ◽  
Vol 38 ◽  
pp. 383
Author(s):  
Luiz Eduardo Medeiros ◽  
Gilberto Fisch ◽  
Paulo Iriart ◽  
Felipe Denardin Costa ◽  
Dionnathan Willian Oliveira ◽  
...  

The atmospheric flow near the surface and in the planetary boundary layer (PBL) are investigated for the coastal part of Maranhão state. Near the coast in the PBL the flow is predominantly from the northeast quadrant with its meridional component increasing during the day and being from north-northeast and decreasing during the course of the night to be from east-northeast at early morning. The result of this is a small counterclockwise rotation but with no flow reversals. Through an analysis of extensive radiosonde data it is found that the flow above the PBL is predominantly southeasterly for the region. It is consequence of the outflow from the descending branch of the large-scale circulation of the Hadley cell. For stations further inland the flow is from approximately northeast during period between morning to noon but rotating clockwise to become from southeast-east (SEE) sector at early evening. The clockwise rotation continues in the afternoon and the wind becomes from south, and later southwest when in the evening it quickly becomes from north. The wind rotation during this period is mainly determined by an oscillating surface pressure gradient-force. During the night the local surface wind tendency is not controlled by the gradient-force probably because the air has to go against higher terrain and negative buoyancy becomes an important force of the momentum balance. The oscillating surface pressure-gradient-force is a response to a sea-breeze circulation. In the coast, we speculate that the flow does not reverse its meridional component because the surface pressure-gradient point south there for most of the time.


2007 ◽  
Vol 64 (2) ◽  
pp. 532-547 ◽  
Author(s):  
Xianan Jiang ◽  
Ngar-Cheung Lau ◽  
Isaac M. Held ◽  
Jeffrey J. Ploshay

Abstract A model diagnosis has been performed on the nocturnal Great Plains low-level jet (LLJ), which is one of the key elements of the warm season regional climate over North America. The horizontal–vertical structure, diurnal phase, and amplitude of the LLJ are well simulated by an atmospheric general circulation model (AGCM), thus justifying a reevaluation of the physical mechanisms for the formation of the LLJ based on output from this model. A diagnosis of the AGCM data confirms that two planetary boundary layer (PBL) processes, the diurnal oscillation of the pressure gradient force and of vertical diffusion, are of comparable importance in regulating the inertial oscillation of the winds, which leads to the occurrence of maximum LLJ strength during nighttime. These two processes are highlighted in the theories for the LLJ proposed by Holton (1967) and Blackadar (1957). A simple model is constructed in order to study the relative roles of these two mechanisms. This model incorporates the diurnal variation of the pressure gradient force and vertical diffusion coefficients as obtained from the AGCM simulation. The results reveal that the observed diurnal phase and amplitude of the LLJ can be attributed to the combination of these two mechanisms. The LLJ generated by either Holton’s or Blackadar’s mechanism alone is characterized by an unrealistic meridional phase shift and weaker amplitude. It is also shown that the diurnal phase of the LLJ exhibits vertical variations in the PBL, more clearly at higher latitudes, with the upper PBL wind attaining a southerly peak several hours earlier than the lower PBL. The simple model demonstrates that this phase tilt is due mainly to sequential triggering of the inertial oscillation from upper to lower PBL when surface cooling commences after sunset. At lower latitudes, due to the change of orientation of prevailing mean wind vectors and the longer inertial period, the inertial oscillation in the lower PBL tends to be interrupted by strong vertical mixing in the following day, whereas in the upper PBL, the inertial oscillation can proceed in a low-friction environment for a relatively longer duration. Thus, the vertical phase tilt initiated at sunset is less evident at lower latitudes.


2016 ◽  
Vol 33 (2) ◽  
pp. 391-396 ◽  
Author(s):  
Thomas R. Parish ◽  
David A. Rahn ◽  
Dave Leon

AbstractUse of an airborne platform to determine the dynamics of atmospheric motion has been ongoing for over three decades. Much of the effort has been centered on the determination of the horizontal pressure gradient force along an isobaric surface, and with wind measurements the nongeostrophic components of motion can be obtained. Recent advances using differential GPS-based altitude measurements allow accurate assessment of the geostrophic wind. Porpoise or sawtooth maneuvers are used to determine the vertical cross section of the horizontal pressure gradient force. D-values, the difference of the height of a given pressure level from that in a reference atmosphere, are used to isolate the vertical structure of the horizontal component of the pressure gradient force from the vastly larger hydrostatic pressure gradient. Comparison of measured D-value cross sections with airborne measurements of the horizontal pressure gradient is shown. Comparison of D-values with output from the WRF Model demonstrates that the airborne measurements are consistent with finescale numerical simulations. This technique provides a means of inferring the thermal wind, thereby enabling a detailed examination of the vertical structure of the forcing of mesoscale and synoptic-scale wind regimes.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1343
Author(s):  
François Pimont ◽  
Jean-Luc Dupuy ◽  
Rodman R. Linn ◽  
Jeremy A. Sauer ◽  
Domingo Muñoz-Esparza

Turbulent flows over forest canopies have been successfully modeled using Large-Eddy Simulations (LES). Simulated winds result from the balance between a simplified pressure gradient forcing (e.g., a constant pressure-gradient or a canonical Ekman balance) and the dissipation of momentum, due to vegetation drag. Little attention has been paid to the impacts of these forcing methods on flow features, despite practical challenges and unrealistic features, such as establishing stationary velocity or streak locking. This study presents a technique for capturing the effects of a pressure-gradient force (PGF), associated with atmospheric patterns much larger than the computational domain for idealized simulations of near-surface phenomena. Four variants of this new PGF are compared to existing forcings, for turbulence statistics, spectra, and temporal averages of flow fields. Results demonstrate that most features of the turbulent flow are captured. The variants can either enable modelers to prescribe a wind speed and direction at a reference height close to the ground as required in wildfire simulations, and/or mitigate streaks locking by reproducing the stability of the Ekman balance. Conditions of use, benefits, and drawbacks are discussed. PGF approaches, therefore, provide a viable solution for precursor inflows, including for the specific domains used in fire simulations.


Sign in / Sign up

Export Citation Format

Share Document