scholarly journals Structure, spatio-temporal dynamics and disturbance regime of the mixed beech–silver fir–Norway spruce old-growth forest of Biogradska Gora (Montenegro)

Author(s):  
R. Motta ◽  
M. Garbarino ◽  
R. Berretti ◽  
I. Bjelanovic ◽  
E. Borgogno Mondino ◽  
...  
2008 ◽  
Vol 38 (11) ◽  
pp. 2728-2737 ◽  
Author(s):  
Thomas A. Nagel ◽  
Miroslav Svoboda

Due to the scarcity of old-growth forests in much of Europe, there is little quantitative information on disturbance processes that influence forest dynamics. However, this information is crucial for forest management that tries to emulate patterns and processes in natural forests. We quantified the gap disturbance regime in an old-growth forest dominated by European beech ( Fagus sylvatica L.) and silver fir ( Abies alba Miller) in the Dinaric Mountains of Bosnia and Herzegovina. We sampled 87 gaps in four stands using line-intercept sampling. The percentages of forest area in canopy gaps and expanded gaps ranged from 12% to 17.2% and 35.5% to 39.7%, respectively. Although many of the gaps were small (<100 m2) and formed from a single gapmaker, large canopy openings >1000 m2 with numerous gapmakers made up a disproportionate amount of the total gap area. More than half the gaps had more than one gapmaker and were often in separate decay classes, indicating gaps had expanded over time during separate disturbance events. Furthermore, 51% of all gapmakers were uprooted or wind-snapped, whereas only 22% died standing. These results suggest that wind disturbance plays an important role in creating intermediate to large canopy openings through both gap formation and gap expansion processes.


1991 ◽  
Vol 21 (12) ◽  
pp. 1730-1741 ◽  
Author(s):  
Kenneth P. Lertzman ◽  
Charles J. Krebs

We examined four stands in a subalpine old-growth forest in the Coast Mountains of southwestern British Columbia for gap-phase structure. Though the stands varied in the proportions of each species, all had a similar distribution of area under closed canopy and in gaps (overall means: 29% closed canopy, 52% expanded gap, 18% canopy gap). Median areas of canopy gaps and expanded gaps were 41 and 203 m2, respectively. Most gaps (90%) had more than one gap maker, and gap makers within a gap were often from mortality events separated in time. Half of all gap makers died standing, and only 13% were windthrown. Pacific silver fir (Abiesamabilis (Dougl.) Forbes) was represented among gap makers in a much higher proportion than among canopy trees in general (64 vs. 45%). The estimated forest turnover time varied from 280–1000 years, depending on assumptions about the time taken for gaps to be filled. Distinctive features of gap-phase structure and dynamics in this forest are the high proportion of area in gap, small gap size, multiple gap makers of varying stages of decay, and long tenure of gaps before they are filled.


2003 ◽  
Vol 79 (3) ◽  
pp. 621-631 ◽  
Author(s):  
Ajith H Perera ◽  
David J.B. Baldwin ◽  
Dennis G Yemshanov ◽  
Frank Schnekenburger ◽  
Kevin Weaver ◽  
...  

Planning for old-growth forests requires answers to two large-scale questions: How much old-growth forest should exist? And where can they be sustained in a landscape? Stand-level knowledge of old-growth physiognomy and dynamics are not sufficient to answer these questions. We assert that large-scale disturbance regimes may provide a strong foundation to understand the spatio-temporal ageing patterns in forest landscapes that determine the potential for old growth. Approaches to describe large-scale disturbance regimes range from scenarios reconstructed from historical evidence to simulation of landscapes using predictive models. In this paper, we describe a simulation modelling approach to determine landscape-ageing patterns, and thereby the landscape potential of old-growth forests. A spatially explicit stochastic simulation model of landscape fire–forest cover dynamics was applied to a 1.8 million-ha case study boreal forest landscape to quantify the spatio-temporal variation of landscape ageing. Twenty-five replicates of 200-year simulation runs of the fire disturbance regime, at a 1-ha resolution, generated a suite of variables of landscape ageing and their error estimates. These included temporal variation of older age cohorts over 200 years, survivorship distribution at the 200th year, and spatial tendencies of ageing. This information, in combination with spatial tendency of species occurrence, constitutes the contextual framework to plan how much old-growth forest a given landscape can sustain, and where such forest could be located. Key words: landscape management, old growth, spatial simulation modelling, landscape ecology, boreal forest, Ontario, fire regime simulation, natural forest disturbances, stochastic models, age-class distribution


2004 ◽  
Vol 34 (2) ◽  
pp. 376-383 ◽  
Author(s):  
Ken Olaf Storaunet ◽  
Jørund Rolstad

We estimated time from death to fall (standing time) of Norway spruce (Picea abies (L.) Karst.) snags in a submountainous old-growth forest in south-central Norway, applying four calculation methods to 124 dendro chrono logically cross-dated still-standing snags and 64 fallen logs. The calculation methods consistently estimated expected standing time of snags at 26–34 years, with a median of 16–21 years and 20% of snags standing for >48–58 years. The survival function from all methods took the approximate form of a negative exponential, with a 3%–4% annual fall rate for snags. In the distribution of time since death, a small peak in dead trees 20–30 years ago (late 1970s) coincides with a historic epidemic of bark beetles. The method using only time since death of still-standing snags appears to be the most feasible for estimating total standing time of snags in old-growth forests with constant tree mortality.


2019 ◽  
Vol 449 ◽  
pp. 117461 ◽  
Author(s):  
Lucas B. Harris ◽  
Andrew E. Scholl ◽  
Amanda B. Young ◽  
Becky L. Estes ◽  
Alan H. Taylor

2019 ◽  
Vol 10 (2) ◽  
pp. 159-164
Author(s):  
Valentin Cristea ◽  
Ștefan Leca ◽  
Albert Ciceu ◽  
Șerban Chivulescu ◽  
Ovidiu Badea

Background and Purpose: Romania’s forests are of globally significant value due to their natural characteristics, as similar forests in some other parts of the world have been lost forever. These types of forests, so-called "virgin" and "quasi-virgin (old growth)" forests, are also identified in the Buzau Mountains, which are part of the Eastern Carpathians in Romania (Curvature Region). Materials and Methods: To study and understand the structure and dynamics of primeval forest, four permanent one-hectare research plots were installed in the Penteleu Mountains, part of the Buzau Mountains. All trees with a diameter at breast height (DBH) greater than 80 mm were measured and their main dendrometric characteristics (DBH, height and social position) registered. The forest structure was analysed by fitting different theoretical distribution functions (beta, gamma, gamma 3P, gamma 3P mixt, loglogistic 3p, lognormal 3P and Weibull 3p). The structural homogeneity of the permanent research plots was tested using the Camino index (H) and Gini index (G). Results: For the smaller DBH categories, Norway spruce was relatively shorter in height, but with increasing DBH, the heights of Norway spruce exceeded those of European beech. Stand volume varied between 615 and 1133 m3 per hectare. The area of maximum stability where we encountered the lowest tree height variability was recorded between the 60 cm and 100 cm diameter categories. The Lorenz curve and the Gini index indicated that the studied stands have high structural biodiversity. Conclusions: The results showed that the studied forests have an optimal structural diversity, assuring them a higher stability and multifunctionality. Thus, these forests are models for managed forests.


2018 ◽  
Vol 15 (23) ◽  
pp. 7127-7139 ◽  
Author(s):  
Bharat Rastogi ◽  
Max Berkelhammer ◽  
Sonia Wharton ◽  
Mary E. Whelan ◽  
Frederick C. Meinzer ◽  
...  

Abstract. Carbonyl sulfide (OCS) has recently emerged as a tracer for terrestrial carbon uptake. While physiological studies relating OCS fluxes to leaf stomatal dynamics have been established at leaf and branch scales and incorporated into global carbon cycle models, the quantity of data from ecosystem-scale field studies remains limited. In this study, we employ established theoretical relationships to infer ecosystem-scale plant OCS uptake from mixing ratio measurements. OCS fluxes showed a pronounced diurnal cycle, with maximum uptake at midday. OCS uptake was found to scale with independent measurements of CO2 fluxes over a 60 m tall old-growth forest in the Pacific Northwest of the US (45∘49′13.76′′ N, 121∘57′06.88′′ W) at daily and monthly timescales under mid–high light conditions across the growing season in 2015. OCS fluxes were strongly influenced by the fraction of downwelling diffuse light. Finally, we examine the effect of sequential heat waves on fluxes of OCS, CO2, and H2O. Our results bolster previous evidence that ecosystem OCS uptake is strongly related to stomatal dynamics, and measuring this gas improves constraints on estimating photosynthetic rates at the ecosystem scale.


Sign in / Sign up

Export Citation Format

Share Document