Numerical simulation of structural responses to a far-field explosion

2015 ◽  
Vol 16 (3) ◽  
pp. 226-236 ◽  
Author(s):  
Chao Ding ◽  
Tuan Ngo ◽  
Abdallah Ghazlan ◽  
Raymond Lumantarna ◽  
Priyan Mendis
2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Meixia Chen ◽  
Cong Zhang ◽  
Xiangfan Tao ◽  
Naiqi Deng

This paper studies the vibrational behavior and far-field sound radiation of a submerged stiffened conical shell at low frequencies. The solution for the dynamic response of the conical shell is presented in the form of a power series. A smeared approach is used to model the ring stiffeners. Fluid loading is taken into account by dividing the conical shell into narrow strips which are considered to be local cylindrical shells. The far-field sound pressure is solved by the Element Radiation Superposition Method. Excitations in two directions are considered to simulate the loading on the surface of the conical shell. These excitations are applied along the generator and normal to the surface of the conical shell. The contributions from the individual circumferential modes on the structural responses of the conical shell are studied. The effects of the external fluid loading and stiffeners are discussed. The results from the analytical models are validated by numerical results from a fully coupled finite element/boundary element model.


Author(s):  
Tung Xuan Vuong ◽  
Willow Yangliu Li ◽  
Ahmed Al-Jumaily ◽  
Neel Pandey

Abstract The paper presents an investigation into the noise generated by structural vibration of an electric motor used in appliance products using Computational Simulation Approach. In particular, a 3-D numerical simulation model is specifically developed to predict the frequency response of the stator under three different simulation conditions: radial force only, tangential force only and the combination of both forces. The obtained data is used to analyze the acoustic generation in the far-field. Experimental is used to validate the predicted results. It shows the predicted results are very close to experimental results.


Sign in / Sign up

Export Citation Format

Share Document