CODE PROVISIONS AND ANALYTICAL MODELLING FOR THE IN-PLANE FLEXIBILITY OF FLOOR DIAPHRAGMS IN BUILDING STRUCTURES

2001 ◽  
Vol 5 (4) ◽  
pp. 565-594 ◽  
Author(s):  
I. N. DOUDOUMIS ◽  
A. M. ATHANATOPOULOU
2003 ◽  
Author(s):  
F. G. Abatt ◽  
Quazi Hossain ◽  
Milon Meyer

Evaluation of life safety risks to facility occupants, public, and the environment that may result from earthquake events involves both building structures and equipment supported from these structures. But, it is the seismic design of building structures that typically receive the bulk of the attention from the code committees of the national professional organizations and the regulatory authorities. For safety related equipment in nuclear facilities (e.g., Seismic Category I equipment in nuclear power plants and Seismic Performance Category 3 and 4 equipment in the Department of Energy facilities), the seismic design and analysis guidelines and acceptance criteria are well established. But, for Nonseismic Category equipment in nuclear power plants and Seismic Performance Category 1 and 2 equipment in Department of Energy facilities, these have not yet been developed to the same level of completeness and rigor. The code provisions and guidelines available today for these lower class/categories of equipment are briefly, but critically discussed here, along with a comparison of the results of the application of these code provisions.


2018 ◽  
Vol 9 (5) ◽  
pp. 705-720 ◽  
Author(s):  
Ehsan Bazarchi ◽  
Yousef Hosseinzadeh ◽  
Parinaz Panjebashi Aghdam

Purpose It is common practice in structural engineering to assume floor diaphragms infinitely stiff in their own plane. But, most of the code provisions lack clarity and unity in categorising floor diaphragms and discussing their behaviour based on the seismic response of the structures. Besides, although many of these code provisions have presented simple techniques and formulations for determining the level of flexibility in floor diaphragms, the implementation of these techniques on more complex floor systems such as the steel-deck composite floors is still under question. The paper aims to discuss these issues. Design/methodology/approach In this study, an equivalent concrete floor is employed as a representative of in-plane diaphragm action of steel-deck composite floor, using simple modelling techniques in SAP2000 and the results are validated by complex structural models developed in ABAQUS. Afterwards, the equivalent floor is inserted to 3, 5 and 7 storey steel structures with 2, 3 and 5 plan aspect ratios in two categories of structures with rigid diaphragms and analogous structures with flexible diaphragms and the responses are compared to each other. Findings The results show that the proposed technique is an effective method for evaluating the diaphragm action of steel-deck composite floors. Additionally, it is concluded that, the boundary values of plan aspect ratio equal to 3 and λ coefficient equal to 0.5 in steel-deck composite floors, mentioned in code provisions for categorising diaphragms, are not always conservative and need to be scrutinised. Originality/value The proposed methodology provides simple framework for assessing the effects of in-plane flexibility of steel-deck composite on seismic response of steel structures.


2000 ◽  
Vol 16 (4) ◽  
pp. 853-878 ◽  
Author(s):  
Luis E. Suarez ◽  
Mahendra P. Singh

Elevators are among the most important mechanical systems in building structures that are quite susceptible to earthquake-induced damages. This survey paper is written primarily for the earthquake engineers who have not been directly involved in the design and maintenance of elevator systems but who are professionally interested in their functioning and performance. It describes the important components of an elevator system and highlights those that are most susceptible to earthquake-induced ground motions. A comprehensive review of the observed performance of elevators in past earthquakes reported by many investigators in the open literature is also presented. The evolution of code provisions for seismic design of these systems, measures adopted by the industry to mitigate the seismic effects and enhance seismic performance, and rationale of simple formula used for the current designs of counterweight guide rails and their supports are reviewed. A comprehensive review of the technical studies conducted to examine the dynamic behavior of these studies is also presented.


2012 ◽  
Vol 28 (1_suppl1) ◽  
pp. 349-384 ◽  
Author(s):  
S. K. Ghosh ◽  
Ned M. Cleland

The Precast/Prestressed Concrete Institute (PCI) sent an assessment team to Chile, which visited the areas affected by the 27 February 2010 earthquake between 26 and 30 April 2010. This paper reports on the team's observations on the performance of precast/prestressed concrete structures. The precast concrete building systems observed by the PCI team generally performed well. In some cases, the lateral force-resisting system performed satisfactorily, but the absence or weakness of diaphragm framing resulted in local failures. Overall, the PCI team found a mature and sophisticated precast concrete industry that has successfully considered and solved issues of earthquake resistance without some of the constraints imposed on U.S. practice by restrictive building code provisions.


2019 ◽  
Vol 20 (1) ◽  
pp. 232-246 ◽  
Author(s):  
Luigi Di Sarno ◽  
George Karagiannakis

Abstract The investigation of the seismic integrity of petrochemical plant steel structures should be commensurable to their importance given the high necessity for human life safety and financial robustness. To date, it is demonstrated in the existing literature that still many grey areas of knowledge exist upon the appropriate application of code provisions on non-building structures design. Indeed, the selection of seismic design parameters such as system performance factors or important classes are still vague aspects, in contrast with those for common building structures, either because of the paucity of information of seismic codes or due to the structural peculiarities that characterise the industrial structures resulting in the difficulty of defining ‘all-encompassing’ design parameters. The present paper aims at highlighting those parameters considering also a case-study that pertains to a steel pipe rack. The pipe rack is designed and analysed in the linear and nonlinear regime, both statically and dynamically, according to the Italian and European codes. American code provisions are examined as well so as possible inconsistencies might be found. It is demonstrated that the common nonlinear static analysis (pushover analysis) cannot be used to assess the response of the rack and the behaviour factor selection from current standards could be unjustifiable. Also, common engineering demand parameters, e.g. interstorey drift ratio, need further assessment vis-à-vis the response of nonstructural components of which the current design method does not comply with modern methods.


Sign in / Sign up

Export Citation Format

Share Document