Seismic Capacity Assessment of Unreinforced Concrete Block Masonry Buildings in Pakistan Before and After Retrofitting

2014 ◽  
Vol 19 (3) ◽  
pp. 357-382 ◽  
Author(s):  
Zeeshan Ahmad ◽  
Khan Shahzada ◽  
Bora Gencturk ◽  
Akhtar Naeem Khan ◽  
Rashid Rehan ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Asfandyar Ahmed ◽  
Imad Ahmad ◽  
Khan Shahzada ◽  
Muhammad Tayyab Naqash ◽  
Bashir Alam ◽  
...  

Brick masonry is widely used for building construction throughout the world. However, unreinforced brick masonry buildings performed poorly in the 2005 Kashmir earthquake, in Pakistan, resulting in a decline in the use of brick masonry. In order to investigate and quantify the performance of brick masonry against the seismic forces by confining it through typical stiffer, line elements (column and beams), a full-scaled room model of an area 3048 × 3658 mm (10 × 12 ft) and height of 3353 mm (11 ft) was constructed using confined brick masonry. The model was tested under quasistatic loading system. Crack pattern was noted at the end of each loading cycle. The response of the model was interpreted through a hysteresis curve, which was then idealized by a bilinear curve. A comparison of the results has been made with four different studies done on the similar model made of unreinforced brick masonry before and after retrofitting and unreinforced concrete block masonry before and after retrofitting previously tested at the same testing facility.


2011 ◽  
Vol 255-260 ◽  
pp. 2627-2631
Author(s):  
Muhammad Shoaib ◽  
Amjad Naseer ◽  
Khan Shahzada ◽  
Akhtar Naeem Khan ◽  
M. Ashraf

This paper presents an experimental study on the improvement of unreinforced block masonry buildings against earthquake disasters. Unreinforced concrete block masonry piers have been tested for lateral strength before and after retrofitting. Welded mesh and injection of cement grout techniques have been used for piers retrofitting. The analysis of experimental results demonstrates that proper retrofitting can decrease the risk to concrete block masonry buildings in future scenario earthquakes. Retrofitting increases not only the overall strength of unreinforced masonry piers but also the ductility.


2010 ◽  
Vol 133-134 ◽  
pp. 623-628
Author(s):  
Marco Munari ◽  
Gianluca Busolo ◽  
Maria Rosa Valluzzi

A mechanical based method for the evaluation of the seismic capacity of masonry buildings’ classes in terms of damage limit states is presented: the purpose of the study is to achieve, in the framework of vulnerability analyses at territorial scale, reliable values for the damage level of vulnerability classes of masonry buildings, depending on the seismic input level. This approach is, in fact, designed as a “1st level” tool based on easily traceable information provided by expeditious surveys. Once identified a limited number of typological, physical and mechanical parameters that are necessary to define each vulnerability class, a significant number of simplified models of masonry buildings belonging to each class has been created. Non-linear static analysis of these models allowed the creation of bilinear elastic perfectly plastic capacity curves: the displacement capacity described by these curves is related with the actual displacement values required by seismic intensities associated to different return periods. It is so possible to identify, for different vulnerability classes and different seismic inputs, the loss of capacity in terms of damage level of each building. An application of the method to models representative of masonry buildings in the historical centre of Sulmona, in L’Aquila province, and a comparison of the results with others obtained with other methodologies of assessment are presented.


Author(s):  
Amaryllis Mouyiannou ◽  
Andrea Penna ◽  
Maria Rota ◽  
Francesco Graziotti ◽  
Guido Magenes

The seismic capacity of a structure is a function of the characteristics of the system as well as of its state, which is mainly affected by previous damage and deterioration. The cumulative damage from repeated shocks (for example during a seismic sequence or due to multiple events affecting an unrepaired building stock) affects the vulnerability of masonry buildings for subsequent events. This paper proposes an analytical methodology for the derivation of state-dependent fragility curves, taking into account cumulated seismic damage, whilst neglecting possible ageing effects. The methodology is based on nonlinear dynamic analyses of an equivalent single degree of freedom system, properly calibrated to reproduce the static and dynamic behaviour of the structure. An application of the proposed methodology to an unreinforced masonry case study building is also presented. The effect of cumulated damage on the seismic response of this prototype masonry building is further studied by means of nonlinear dynamic analyses with the accelerograms recorded during a real earthquake sequence that occurred in Canterbury (New Zealand) between 2010 and 2012.


2020 ◽  
Vol 97 ◽  
pp. 103281
Author(s):  
Wenge Qiu ◽  
Bingtian Li ◽  
Lun Gong ◽  
Xingxin Qi ◽  
Zhiheng Deng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document