Cure kinetics of a composite friction material with phenolic resin/rubber compounds as organic binder

Author(s):  
Pablo Monreal-Perez ◽  
Laura Ciérvide ◽  
Raúl Orzanco ◽  
Maite Idareta ◽  
Isabel Clavería Ambroj
2006 ◽  
Vol 100 (1) ◽  
pp. 9-17 ◽  
Author(s):  
Akbar Shojaei ◽  
Farhang Abbasi

2007 ◽  
Vol 43 (11) ◽  
pp. 4783-4799 ◽  
Author(s):  
A. Arrillaga ◽  
A.M. Zaldua ◽  
R.M. Atxurra ◽  
A.S. Farid

1995 ◽  
Vol 60 (2) ◽  
pp. 172-187 ◽  
Author(s):  
Pavel Fott ◽  
František Kolář ◽  
Zuzana Weishauptová

On carbonizing phenolic resins, the development of porous structure takes place which influences the transport properties of carbonized materials. To give a true picture of this effect, specimens in the shape of plates were prepared and carbonized at various temperatures. The carbonizates obtained were studied by adsorption methods, electron microscopy, and mercury porosimetry. Diffusivities were evaluated in terms of measuring the kinetics of wetting and drying. It was found out that the porous structure of specimens in different stages of carbonization is formed mostly by micropores whose volumes were within 0.06 to 0.22 cm3/g. The maximum micropore volume is reached at the temperature of 750 °C. The dependence of diffusivity on the carbonization temperature is nearly constant at first, begins to increase in the vicinity of 400 °C, and at 600 °C attains its maximum. The experimental results reached are in agreement with the conception of the development and gradual closing of the microporous structure in the course of carbonization. The dependence of diffusivity on temperature can be expressed by the Arrhenius equation. In this connection, two possible models of mass transport were discussed.


2021 ◽  
pp. 002199832110015
Author(s):  
Alexander Vedernikov ◽  
Yaroslav Nasonov ◽  
Roman Korotkov ◽  
Sergey Gusev ◽  
Iskander Akhatov ◽  
...  

Pultrusion is a highly efficient composite manufacturing process. To accurately describe pultrusion, an appropriate model of resin cure kinetics is required. In this study, we investigated cure kinetics modeling of a vinyl ester pultrusion resin (Atlac 430) in the presence of aluminum hydroxide (Al(OH)3) and zinc stearate (Zn(C18H35O2)2) as processing additives. Herein, four different resin compositions were studied: neat resin composition, composition with Al(OH)3, composition comprising Zn(C18H35O2)2, and composition containing both Al(OH)3 and Zn(C18H35O2)2. To analyze each composition, we performed differential scanning calorimetry at the heating rates of 5, 7.5, and 10 K/min. To characterize the cure kinetics of Atlac 430, 16 kinetic models were tested, and their performances were compared. The model based on the [Formula: see text]th-order autocatalytic reaction demonstrated the best results, with a 4.5% mean squared error (MSE) between the experimental and predicted data. This study proposes a method to reduce the MSE resulting from the simultaneous melting of Zn(C18H35O2)2. We were able to reduce the MSE by approximately 34%. Numerical simulations conducted at different temperatures and pulling speeds demonstrated a significant influence of resin composition on the pultrusion of a flat laminate profile. Simulation results obtained for the 600 mm long die block at different die temperatures (115, 120, 125, and 130 °C) showed that for a resin with a final degree of cure exceeding 95% at the die exit, the maximum difference between the predicted values of pulling speed for a specified set of compositions may exceed 1.7 times.


2019 ◽  
Vol 136 ◽  
pp. 105290 ◽  
Author(s):  
Maryam Jouyandeh ◽  
Zohre Karami ◽  
Samir M. Hamad ◽  
Mohammad Reza Ganjali ◽  
Vahideh Akbari ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document