Implementation of machine learning models for the prediction of vaginal birth after cesarean delivery

Author(s):  
Raanan Meyer ◽  
Natav Hendin ◽  
Michal Zamir ◽  
Nizan Mor ◽  
Gabriel Levin ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Munetoshi Akazawa ◽  
Kazunori Hashimoto ◽  
Noda Katsuhiko ◽  
Yoshida Kaname

AbstractPostpartum hemorrhage is the leading cause of maternal morbidity. Clinical prediction of postpartum hemorrhage remains challenging, particularly in the case of a vaginal birth. We studied machine learning models to predict postpartum hemorrhage. Women who underwent vaginal birth at the Tokyo Women Medical University East Center between 1995 and 2020 were included. We used 11 clinical variables to predict a postpartum hemorrhage defined as a blood loss of > 1000 mL. We constructed five machine learning models and a deep learning model consisting of neural networks with two layers after applying the ensemble learning of five machine learning classifiers, namely, logistic regression, a support vector machine, random forest, boosting trees, and decision tree. For an evaluation of the performance, we applied the area under the curve of the receiver operating characteristic (AUC), the accuracy, false positive rate (FPR) and false negative rate (FNR). The importance of each variable was evaluated through a comparison of the feature importance calculated using a Boosted tree. A total of 9,894 patients who underwent vaginal birth were enrolled in the study, including 188 cases (1.9%) with blood loss of > 1000 mL. The best learning model predicted postpartum hemorrhage with an AUC of 0.708, an accuracy of 0.686, FPR of 0.312, and FNR of 0.398. The analysis of the importance of the variables showed that pregnant gestation of labor, the maternal weight upon admission of labor, and the maternal weight before pregnancy were considered to be weighted factors. Machine learning model can predict postpartum hemorrhage during vaginal delivery. Further research should be conducted to analyze appropriate variables and prepare big data, such as hundreds of thousands of cases.


2020 ◽  
Vol 2 (1) ◽  
pp. 3-6
Author(s):  
Eric Holloway

Imagination Sampling is the usage of a person as an oracle for generating or improving machine learning models. Previous work demonstrated a general system for using Imagination Sampling for obtaining multibox models. Here, the possibility of importing such models as the starting point for further automatic enhancement is explored.


2021 ◽  
Author(s):  
Norberto Sánchez-Cruz ◽  
Jose L. Medina-Franco

<p>Epigenetic targets are a significant focus for drug discovery research, as demonstrated by the eight approved epigenetic drugs for treatment of cancer and the increasing availability of chemogenomic data related to epigenetics. This data represents a large amount of structure-activity relationships that has not been exploited thus far for the development of predictive models to support medicinal chemistry efforts. Herein, we report the first large-scale study of 26318 compounds with a quantitative measure of biological activity for 55 protein targets with epigenetic activity. Through a systematic comparison of machine learning models trained on molecular fingerprints of different design, we built predictive models with high accuracy for the epigenetic target profiling of small molecules. The models were thoroughly validated showing mean precisions up to 0.952 for the epigenetic target prediction task. Our results indicate that the herein reported models have considerable potential to identify small molecules with epigenetic activity. Therefore, our results were implemented as freely accessible and easy-to-use web application.</p>


2020 ◽  
Author(s):  
Shreya Reddy ◽  
Lisa Ewen ◽  
Pankti Patel ◽  
Prerak Patel ◽  
Ankit Kundal ◽  
...  

<p>As bots become more prevalent and smarter in the modern age of the internet, it becomes ever more important that they be identified and removed. Recent research has dictated that machine learning methods are accurate and the gold standard of bot identification on social media. Unfortunately, machine learning models do not come without their negative aspects such as lengthy training times, difficult feature selection, and overwhelming pre-processing tasks. To overcome these difficulties, we are proposing a blockchain framework for bot identification. At the current time, it is unknown how this method will perform, but it serves to prove the existence of an overwhelming gap of research under this area.<i></i></p>


Sign in / Sign up

Export Citation Format

Share Document