Discovery of a long-term refuge for ostracods (Crustacea) after the end-Permian extinction: a unique Carnian (Late Triassic) fauna from the Mersin Mélange, southern Turkey

2017 ◽  
Vol 17 (1) ◽  
pp. 9-58 ◽  
Author(s):  
Marie-Béatrice Forel ◽  
U. Kagan Tekin ◽  
Cengiz Okuyucu ◽  
Yavuz Bedi ◽  
Alaettin Tuncer ◽  
...  
2013 ◽  
Vol 10 (5) ◽  
pp. 7989-8025 ◽  
Author(s):  
N. Preto ◽  
C. Agnini ◽  
M. Rigo ◽  
M. Sprovieri ◽  
H. Westphal

Abstract. The onset of pelagic biomineralization marked a milestone in the history of the long term inorganic carbon cycle: as soon as calcareous nannofossils became major limestone producers, the pH and supersaturation state of the global ocean were stabilized (the so-called Mid Mesozoic Revolution). But although it is known that calcareous nannofossils were abundant already by the end of the Triassic, no estimates exist on their contribution to hemipelagic carbonate sedimentation. With this work, we estimate the volume proportion of Prinsiosphaera, the dominant Late Triassic calcareous nannofossil, in hemipelagic and pelagic carbonates of western Tethys. The investigated Upper Triassic lime mudstones are composed essentially of microspar and tests of calcareous nannofossils, plus minor bioclasts. Prinsiosphaera became a significant component of lime mudstones since the late Norian, and was contributing up to ca. 60% of the carbonate by the late Rhaetian in periplatform environments with hemipelagic sedimentation. The increasing proportion of Prinsiosphaera in upper Rhaetian hemipelagic lime mudstones is paralleled by a increase of the δ13C of bulk carbonate. We interpreted this isotopic trend as related to the diagenesis of microspar, which incorporated respired organic carbon with a low δ13C when it formed during shallow burial. As the proportion of nannofossil tests increased, the contribution of microspar with low δ13C diminished, determining the isotopic trend. We suggest that a similar diagenetic effect may be observed in many Mesozoic limestones with a significant, but not yet dominant, proportion of calcareous plankton.


2020 ◽  
Vol 29 (7) ◽  
pp. 1049-1072
Author(s):  
Utku BAĞCI ◽  
Tamer RIZAOĞLU ◽  
Güzide ÖNAL ◽  
Osman PARLAK

The Antalya Complex in southern Turkey comprises a number of autochthonous and allochthonous units that originated from the Southern Neotethys. Late Triassic volcanic rocks are widespread in the Antalya Complex and are important for the onset of the rifting stage of the southern Neotethys. The studied Late Triassic volcanic rocks within the Antalya Complex are exposed in the southern part of Saklıkent (Antalya) region. They are represented by pillow, massive, and columnar-jointed lava flows with volcaniclastic breccias and pelagic limestone intercalations. Spilitic basalts exhibit intersertal, microlithic porphyritic, and ophitic textures and are represented by plagioclase, pyroxene, and olivine. Secondary phases are characterized by serpentine, calcite, chlorite, epidote, zeolite, and quartz. Based on Zr/Ti vs. Nb/Y ratios, the volcanic rocks are represented by alkaline basalts (Nb/Y = 1.54–2.82). A chondrite normalized REE diagram for the volcanic rocks displays significant LREE enrichment with respect to HREE ([La/Yb]N = 15.14–19.77). Trace element geochemistry of the studied rocks suggests that these rocks are more akin to ocean island basalt (OIB) and were formed by small degrees (~2–4%) of partial melting of an enriched mantle source (spinel + garnet-bearing lherzolite). The volcanic rocks of the Saklıkent region exhibit similarities to the Late Triassic volcanics of the Koçali Complex in SE Anatolia and the Mamonia Complex (Cyprus) in terms of their geochemical features. All evidence suggests that the Late Triassic alkaline volcanics in Antalya, Mamonia (Cyprus), and the Koçali (Adıyaman) Complexes were formed in an extensional environment at the continent-ocean transition zone during the rifting of the southern Neotethyan Ocean.


Paleobiology ◽  
2015 ◽  
Vol 42 (1) ◽  
pp. 127-142 ◽  
Author(s):  
Ellen K. Schaal ◽  
Matthew E. Clapham ◽  
Brianna L. Rego ◽  
Steve C. Wang ◽  
Jonathan L. Payne

AbstractThe small size of Early Triassic marine organisms has important implications for the ecological and environmental pressures operating during and after the end-Permian mass extinction. However, this “Lilliput Effect” has only been documented quantitatively in a few invertebrate clades. Moreover, the discovery of Early Triassic gastropod specimens larger than any previously known has called the extent and duration of the Early Triassic size reduction into question. Here, we document and compare Permian-Triassic body size trends globally in eight marine clades (gastropods, bivalves, calcitic and phosphatic brachiopods, ammonoids, ostracods, conodonts, and foraminiferans). Our database contains maximum size measurements for 11,224 specimens and 2,743 species spanning the Late Permian through the Middle to Late Triassic. The Permian/Triassic boundary (PTB) shows more size reduction among species than any other interval. For most higher taxa, maximum and median size among species decreased dramatically from the latest Permian (Changhsingian) to the earliest Triassic (Induan), and then increased during Olenekian (late Early Triassic) and Anisian (early Middle Triassic) time. During the Induan, the only higher taxon much larger than its long-term mean size was the ammonoids; they increased significantly in median size across the PTB, a response perhaps related to their comparatively rapid diversity recovery after the end-Permian extinction. The loss of large species in multiple clades across the PTB resulted from both selective extinction of larger species and evolution of surviving lineages toward smaller sizes. The within-lineage component of size decrease suggests that only part of the size decrease can be related to the end-Permian kill mechanism; in addition, Early Triassic environmental conditions or ecological pressures must have continued to favor small body size as well. After the end-Permian extinction, size decrease occurred across ecologically and physiologically disparate clades, but this size reduction was limited to the first part of the Early Triassic (Induan). Nektonic habitat or physiological buffering capacity may explain the contrast of Early Triassic size increase and diversification in ammonoids versus size reduction and slow recovery in benthic clades.


2018 ◽  
Author(s):  
John Clarke ◽  
Matt Friedman

Comprising Holostei and Teleostei, the ~32,000 species of neopterygian fishes are anatomically disparate and represent the dominant group of aquatic vertebrates today. However, the pattern by which teleosts rose to represent almost all of this diversity, while their holostean sister-group dwindled to eight extant species and two broad morphologies, is poorly constrained. A geometric morphometric approach was taken to generate a morphospace from more than 400 fossil taxa, representing almost all articulated neopterygian taxa known from the first 150 million years—roughly 60%—of their history (Triassic‒Early Cretaceous). Patterns of morphospace occupancy and disparity are examined to: (1) assess evidence for a phenotypically “dominant” holostean phase; (2) evaluate whether expansions in teleost phenotypic variety are predominantly abrupt or gradual, including assessment of whether early apomorphy-defined teleosts are as morphologically conservative as typically assumed; and (3) compare diversification in crown and stem teleosts. The systematic affinities of dapediiforms and pycnodontiforms, two extinct neopterygian clades of uncertain phylogenetic placement, significantly impact patterns of morphological diversification. For instance, alternative placements dictate whether or not holosteans possessed statistically higher disparity than teleosts in the Late Triassic and Jurassic. Despite this ambiguity, all scenarios agree that holosteans do not exhibit a decline in disparity during the Early Triassic‒Early Cretaceous interval, but instead maintain their Toarcian‒Callovian variety until the end of the Early Cretaceous without substantial further expansions. After a conservative Induan‒Carnian phase, teleosts colonize (and persistently occupy) novel regions of morphospace in a predominantly gradual manner until the Hauterivian, after which expansions are rare. Furthermore, apomorphy-defined teleosts possess greater phenotypic variety than typically assumed. Comparison of crown and stem teleost partial disparity indicates that, despite a statistically significant increase in crown teleost disparity between the Late Jurassic and earliest Cretaceous, stem teleosts remained important long-term contributors to overall teleost disparity during this time.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Michelle R. Stocker ◽  
Li-Jun Zhao ◽  
Sterling J. Nesbitt ◽  
Xiao-Chun Wu ◽  
Chun Li

Abstract Following the end-Permian extinction, terrestrial vertebrate diversity recovered by the Middle Triassic, and that diversity was now dominated by reptiles. However, those reptilian clades, including archosaurs and their closest relatives, are not commonly found until ~30 million years post-extinction in Late Triassic deposits despite time-calibrated phylogenetic analyses predicting an Early Triassic divergence for those clades. One of these groups from the Late Triassic, Phytosauria, is well known from a near-Pangean distribution, and this easily recognized clade bears an elongated rostrum with posteriorly retracted nares and numerous postcranial synapomorphies that are unique compared with all other contemporary reptiles. Here, we recognize the exquisitely preserved, nearly complete skeleton of Diandongosuchus fuyuanensis from the Middle Triassic of China as the oldest and basalmost phytosaur. The Middle Triassic age and lack of the characteristically-elongated rostrum fill a critical morphological and temporal gap in phytosaur evolution, indicating that the characteristic elongated rostrum of phytosaurs appeared subsequent to cranial and postcranial modifications associated with enhanced prey capture, predating that general trend of morphological evolution observed within Crocodyliformes. Additionally, Diandongosuchus supports that the clade was present across Pangea, suggesting early ecosystem exploration for Archosauriformes through nearshore environments and leading to ease of dispersal across the Tethys.


2013 ◽  
Vol 10 (9) ◽  
pp. 6053-6068 ◽  
Author(s):  
N. Preto ◽  
C. Agnini ◽  
M. Rigo ◽  
M. Sprovieri ◽  
H. Westphal

Abstract. The onset of pelagic biomineralization was a milestone in the history of the long-term inorganic carbon cycle: as soon as calcareous nannofossils became major limestone producers, the pH and supersaturation state of the global ocean were stabilized (the so-called mid-Mesozoic revolution). But although it is known that calcareous nannofossils were abundant already by the end of the Triassic, no estimates exist on their contribution to hemipelagic carbonate sedimentation. With this work, we estimate the volume proportion of Prinsiosphaera, the dominant late Triassic calcareous nannofossil, in hemipelagic and pelagic carbonates of western Tethys. The investigated Upper Triassic lime mudstones are composed essentially of microspar and tests of calcareous nannofossils, plus minor bioclasts. Prinsiosphaera had become a significant component of lime mudstones since the late Norian, and was contributing up to ca. 60% of the carbonate by the late Rhaetian in periplatform environments with hemipelagic sedimentation. The increasing proportion of Prinsiosphaera in upper Rhaetian hemipelagic lime mudstones is paralleled by an increase of the δ13C of bulk carbonate. We interpreted this isotopic trend as related to the diagenesis of microspar, which incorporated respired organic carbon with a low δ13C when it formed during shallow burial. As the proportion of nannofossil tests increased, the contribution of microspar with low δ13C diminished, determining the isotopic trend. We suggest that a similar diagenetic effect may be observed in many Mesozoic limestones with a significant, but not yet dominant, proportion of calcareous plankton.


Author(s):  
Richard J. Butler ◽  
Randall B. Irmis ◽  
Max C. Langer

The early Mesozoic records an important transition in the history of the Earth’s terrestrial ecosystems. As they recovered from the largest known mass extinction (the end-Permian event), organisms in these ecosystems transitioned to new forms that eventually evolved into the classic Mesozoic biotas, and laid the foundations for many groups still flourishing today (Fraser 2006; Irmis & Whiteside 2010; Sues & Fraser 2010). All of this was set against a backdrop of dynamic climatic and physical events that shaped these biotas. This early Mesozoic terrestrial transition reached its culmination in many ways during the Late Triassic, when ecosystems had largely recovered from the end-Permian extinction, but had not yet been affected by the end-Triassic mass extinction (Fraser & Sues this volume). Thus, we see a combination of taxa, with some groups that would not survive the end of the Triassic living alongside early representatives of lineages that flourished later in the Mesozoic (e.g., Fraser 2006; Irmis et al. 2007; Brusatte et al. 2008; Sues & Fraser 2010, this volume) and in some cases are still diverse today. Just one example of this transition, recorded during the Late Triassic, is the origin and diversification of non-avian dinosaurs, the iconic representatives of Mesozoic terrestrial ecosystems (Brusatte et al. 2010; Langer et al. 2010). Although small and rare components of their respective biotas when they first evolved ∼231 Ma, dinosaurs were abundant and had a near-worldwide distribution by the beginning of the Jurassic Period (∼201·3 Ma).


Sign in / Sign up

Export Citation Format

Share Document