Dislocation density-based constitutive model for the mechanical behaviour of irradiated Cu

Author(s):  
A. Arsenlis § ◽  
B. D. Wirth ◽  
M. Rhee
1996 ◽  
Vol 118 (4) ◽  
pp. 441-447 ◽  
Author(s):  
Y. Estrin ◽  
H. Braasch ◽  
Y. Brechet

A new constitutive model describing material response to cyclic loading is presented. The model includes dislocation densities as internal variables characterizing the microstructural state of the material. In the formulation of the constitutive equations, the dislocation density evolution resulting from interactions between dislocations in channel-like dislocation patterns is considered. The capabilities of the model are demonstrated for INCONEL 738 LC and Alloy 800H.


2017 ◽  
Vol 121 ◽  
pp. 164-170 ◽  
Author(s):  
Mohammadreza Zamani ◽  
Hoda Dini ◽  
Ales Svoboda ◽  
Lars-Erik Lindgren ◽  
Salem Seifeddine ◽  
...  

2016 ◽  
Vol 3 (9) ◽  
pp. 160365 ◽  
Author(s):  
Kaveh Laksari ◽  
Danial Shahmirzadi ◽  
Camilo J. Acosta ◽  
Elisa Konofagou

This study aims at determining the in vitro anisotropic mechanical behaviour of canine aortic tissue. We specifically focused on spatial variations of these properties along the axis of the vessel. We performed uniaxial stretch tests on canine aortic samples in both circumferential and longitudinal directions, as well as histological examinations to derive the tissue's fibre orientations. We subsequently characterized a constitutive model that incorporates both phenomenological and structural elements to account for macroscopic and microstructural behaviour of the tissue. We showed the two fibre families were oriented at similar angles with respect to the aorta's axis. We also found significant changes in mechanical behaviour of the tissue as a function of axial position from proximal to distal direction: the fibres become more aligned with the aortic axis from 46° to 30°. Also, the linear shear modulus of media decreased as we moved distally along the aortic axis from 139 to 64 kPa. These changes derived from the parameters in the nonlinear constitutive model agreed well with the changes in tissue structure. In addition, we showed that isotropic contribution, carried by elastic lamellae, to the total stress induced in the tissue decreases at higher stretch ratios, whereas anisotropic stress, carried by collagen fibres, increases. The constitutive models can be readily used to design computational models of tissue deformation during physiological loading cycles. The findings of this study extend the understanding of local mechanical properties that could lead to region-specific diagnostics and treatment of arterial diseases.


Sign in / Sign up

Export Citation Format

Share Document