scholarly journals A dislocation density based constitutive model for as-cast Al-Si alloys: Effect of temperature and microstructure

2017 ◽  
Vol 121 ◽  
pp. 164-170 ◽  
Author(s):  
Mohammadreza Zamani ◽  
Hoda Dini ◽  
Ales Svoboda ◽  
Lars-Erik Lindgren ◽  
Salem Seifeddine ◽  
...  
1996 ◽  
Vol 118 (4) ◽  
pp. 441-447 ◽  
Author(s):  
Y. Estrin ◽  
H. Braasch ◽  
Y. Brechet

A new constitutive model describing material response to cyclic loading is presented. The model includes dislocation densities as internal variables characterizing the microstructural state of the material. In the formulation of the constitutive equations, the dislocation density evolution resulting from interactions between dislocations in channel-like dislocation patterns is considered. The capabilities of the model are demonstrated for INCONEL 738 LC and Alloy 800H.


2021 ◽  
Vol 2021 ◽  
pp. 1-29
Author(s):  
Qiang Zhang ◽  
Zhanping Song ◽  
Junbao Wang ◽  
Yuwei Zhang ◽  
Tong Wang

Due to the advantages of low porosity, low permeability, high ductility, and excellent capacities for creep and damage self-healing, salt rock is internationally considered as the ideal medium for underground storage of energy and disposal of radioactive waste. As one of the most important mechanical properties of salt rock, creep properties are closely related to the long-term operation stability and safety of salt rock underground storage cavern. A comprehensive review on the creep properties and constitutive model of salt rock is put forward in this paper. The opinions and suggestions on the research priority and direction of salt rock's mechanical properties in the future are put forward: (1) permeability variation of salt rock under the coupling effect of temperature and stress; (2) damage mechanism and evolution process under the effect of creep-fatigue interaction and low frequency cyclic loading; (3) microdeformation mechanisms of salt rock and the relationship between microstructure variations and macrocreep behavior during creep process; (4) the establishment of the creep damage constitutive model with simple form, less parameters, easy application, and considering the damage self-healing ability of salt rock simultaneously.


2016 ◽  
Vol 51 (18) ◽  
pp. 2619-2629 ◽  
Author(s):  
Junbo Xie ◽  
Guodong Fang ◽  
Zhen Chen ◽  
Jun Liang

Tensile experiments of three-dimensional needled C/C-SiC composite from room temperature to 1800℃ were performed to investigate tensile behavior. The damage characteristics and macroscopic mechanical behavior of the composite are relevant to the testing temperature and off-axis angles of the tensile loading. The tensile strength increased while the modulus decreased with the increase of temperature. A high-temperature nonlinear constitutive model was established to analyze the nonlinear stress–strain relationship of the composite. Plastic strain accumulation and stiffness degeneration were described by the plasticity and damage theories. The effect of temperature on the tensile behavior of the composite was particularly considered in this model by introducing a thermal damage variable. The proposed constitutive model can predict the stress–strain behavior of the material subjected to different off-axis tensile load, and at different temperatures. Fairly good agreement was achieved between the predicted and experimental results.


Sign in / Sign up

Export Citation Format

Share Document