XXXVIII. Regraduation in spherically symmetric space-times of general relativity

Author(s):  
T.J. Willmore
2021 ◽  
Vol 18 (03) ◽  
pp. 2150041
Author(s):  
Asifa Ashraf ◽  
Zhiyue Zhang

In this study, we shall explore conformal symmetry to examine the wormhole models by considering traceless fluid. In this regard, we shall take anisotropic fluid with spherically symmetric space-time. Further, we shall calculate the properties of shape-functions, which are necessary for the existence of wormhole geometry. The presence of exotic matter is confirmed in all the cases through the violation of the Null Energy Condition. Furthermore, we have discussed the stability of wormhole solutions through the Tolman–Oppenheimer–Volkoff (TOV) equation. It is observed that our acquired solutions are stable under the particular values of involved parameters in different cases in conformal symmetry.


2009 ◽  
Vol 06 (04) ◽  
pp. 595-617 ◽  
Author(s):  
IVANA BOCHICCHIO ◽  
MAURO FRANCAVIGLIA ◽  
ETTORE LASERRA

This work is focused on spherically symmetric space-times. More precisely, geometric and structural properties of spatially spherical shells of a dust universe are analyzed in detail considering recent results of our research. Moreover, exact solutions, obtained for constant Ricci principal curvatures, are inferred and qualitatively analyzed through suitable classic analogies.


Author(s):  
A. G. Walker

1. It was remarked by me a few years ago that temporal regraduations, other than trivial changes of zero and unit, had not so far been considered in General Relativity. An interesting paper by Dr G. C. McVittie has now appeared in which regraduations are examined in certain spherically symmetric space-times. Under the assumptions made by McVittie it is shown that regraduations can exist for some but not all space-times, those for which they can exist being of a very special form which excludes many space-times generally regarded as significant or interesting. In the present paper I take the matter further and discuss the problem with more generality. It will be shown that the existence of non-trivial regraduations depends firstly upon which theory is being assumed for the derivation of the conservation equations There are two alternatives, and regraduations are found to be excluded by one, the “geodesic” theory, but not necessarily by the other, the “equivalence” theory.


Author(s):  
G. C. McVittie

SummaryThe changes in his description of events brought about by an arbitrary regraduation of an observer's clock are examined, taking the axioms of general relativity as fundamental. It is shown that regraduation does not imply a change from one Riemannian space-time to another but merely a coordinate transformation within space-time. A generalisation of the “dynamical time” of kinematical relativity is a by-product of the investigation.


2010 ◽  
Vol 25 (14) ◽  
pp. 2883-2895 ◽  
Author(s):  
GAMAL G. L. NASHED

We calculate the total energy of an exact spherically symmetric solutions, i.e. Schwarzschild and Reissner–Nordström, using the gravitational energy–momentum 3-form within the tetrad formulation of general relativity. We explain how the effect of the inertial makes the total energy unphysical. Therefore, we use the covariant teleparallel approach which makes the energy always physical one. We also show that the inertial has no effect on the calculation of momentum.


2006 ◽  
Vol 03 (05n06) ◽  
pp. 1263-1271
Author(s):  
J. SZENTHE

Some event horizons in space–times that are invariant under an isometric action, considered first by Carter, are called isometry horizons, especially Killing horizons. In this paper, isometry horizons in spherically symmetric space–times are considered. It is shown that these isometry horizons are all Killing horizons.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 348
Author(s):  
Merced Montesinos ◽  
Diego Gonzalez ◽  
Rodrigo Romero ◽  
Mariano Celada

We report off-shell Noether currents obtained from off-shell Noether potentials for first-order general relativity described by n-dimensional Palatini and Holst Lagrangians including the cosmological constant. These off-shell currents and potentials are achieved by using the corresponding Lagrangian and the off-shell Noether identities satisfied by diffeomorphisms generated by arbitrary vector fields, local SO(n) or SO(n−1,1) transformations, ‘improved diffeomorphisms’, and the ‘generalization of local translations’ of the orthonormal frame and the connection. A remarkable aspect of our approach is that we do not use Noether’s theorem in its direct form. By construction, the currents are off-shell conserved and lead naturally to the definition of off-shell Noether charges. We also study what we call the ‘half off-shell’ case for both Palatini and Holst Lagrangians. In particular, we find that the resulting diffeomorphism and local SO(3,1) or SO(4) off-shell Noether currents and potentials for the Holst Lagrangian generically depend on the Immirzi parameter, which holds even in the ‘half off-shell’ and on-shell cases. We also study Killing vector fields in the ‘half off-shell’ and on-shell cases. The current theoretical framework is illustrated for the ‘half off-shell’ case in static spherically symmetric and Friedmann–Lemaitre–Robertson–Walker spacetimes in four dimensions.


Sign in / Sign up

Export Citation Format

Share Document